@article{SM_2021_212_6_a1,
author = {S. I. Dudov and M. A. Osiptsev},
title = {Characterization of solutions of strong-weak convex programming problems},
journal = {Sbornik. Mathematics},
pages = {782--809},
year = {2021},
volume = {212},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_6_a1/}
}
S. I. Dudov; M. A. Osiptsev. Characterization of solutions of strong-weak convex programming problems. Sbornik. Mathematics, Tome 212 (2021) no. 6, pp. 782-809. http://geodesic.mathdoc.fr/item/SM_2021_212_6_a1/
[1] J.-P. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259 | DOI | MR | Zbl
[2] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, 2-e izd., Fizmatlit, M., 2007, 438 pp. | Zbl
[3] G. E. Ivanov, Slabo vypuklye mnozhestva i funktsii, Fizmatlit, M., 2006, 351 pp. | Zbl
[4] Yu. G. Reshetnyak, “Ob odnom obobschenii vypuklykh poverkhnostei”, Matem. sb., 40(82):3 (1956), 381–398 | MR | Zbl
[5] N. V. Efimov, S. B. Stechkin, “Opornye svoistva mnozhestv v banakhovykh prostranstvakh i chebyshevskie mnozhestva”, Dokl. AN SSSR, 127:2 (1959), 254–257 | MR | Zbl
[6] H. Federer, “Curvature measures”, Trans. Amer. Math. Soc., 93:3 (1959), 418–491 | DOI | MR | Zbl
[7] F. H. Clarke, R. J. Stern, P. R. Wolenski, “Proximal smoothness and the lower-$C^2$ property”, J. Convex Anal., 2:1-2 (1995), 117–144 | MR | Zbl
[8] R. A. Poliquin, R. T. Rockafellar, “Prox-regular functions in variational analysis”, Trans. Amer. Math. Soc., 348:5 (1996), 1805–1838 | DOI | MR | Zbl
[9] R. A. Poliquin, R. T. Rockafellar, L. Thibault, “Local differentiability of distance functions”, Trans. Amer. Math. Soc., 352:11 (2000), 5231–5249 | DOI | MR | Zbl
[10] F. Bernard, L. Thibault, N. Zlateva, “Characterizations of prox-regular sets in uniformly convex Banach spaces”, J. Convex Anal., 13:3-4 (2006), 525–559 | MR | Zbl
[11] R. Janin, Sur la dualité et la sensibilité dans les problèmes de programmation mathématique, These de Doctorat ès-Sciences Mathématiques, Univ. de Paris, 1974
[12] R. T. Rockafellar, “Favorable classes of Lipschitz continuous functions in subgradient optimization”, Progress in nondifferentiable optimization, IIASA Collaborative Proc. Ser. CP-82, 8, Internat. Inst. Appl. Systems Anal., Laxenburg, 1982, 125–144 | MR | Zbl
[13] F. Bernard, L. Thibault, N. Zlateva, “Prox-regular sets and epigraphs in uniformly convex Banach spaces: various regularities and other properties”, Trans. Amer. Math. Soc., 363:4 (2011), 2211–2247 | DOI | MR | Zbl
[14] Z. Y. Wu, “Sufficient global optimality conditions for weakly convex minimization problems”, J. Global Optim., 39:3 (2007), 427–440 | DOI | MR | Zbl
[15] M. V. Balashov, “About the gradient projection algorithm for a strongly convex function and a proximally smooth set”, J. Convex Anal., 24:2 (2017), 493–500 | MR | Zbl
[16] M. V. Balashov, B. T. Polyak, A. A. Tremba, “Gradient projection and conditional gradient methods for constrained nonconvex minimization”, Numer. Funct. Anal. Optim., 41:7 (2020), 822–849 | DOI | MR | Zbl
[17] F. H. Clarke, Optimization and nonsmooth analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts, A Wiley-Interscience Publication. John Wiley Sons, Inc., New York, 1983, xiii+308 pp. | MR | MR | Zbl | Zbl
[18] V. F. Dem'yanov, L. V. Vasil'ev, Nondifferentiable optimization, Transl. Ser. Math. Engrg., Optimization Software, Inc., Publications Division, New York, 1985, xvii+452 pp. | MR | MR | Zbl | Zbl
[19] V. F. Demyanov, A. M. Rubinov, Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 432 pp. | MR | Zbl
[20] B. N. Pshenichnyi, Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980, 320 pp. | MR | Zbl
[21] D. Pallaschke, S. Rolewicz, Foundations of mathematical optimization. Convex analysis without linearity, Math. Appl., Kluwer Acad. Publ., Dordrechet, 1997, xii+582 pp. | DOI | MR | Zbl
[22] A. Rubinov, Abstract convexity and global optimization, Nonconvex Optim. Appl., 44, Kluwer Acad. Publ., Derrechet, 2000, xviii+490 pp. | DOI | MR | Zbl
[23] I. Singer, Abstract convex analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts, A Wiley-Interscience Publication. John Wiley Sons, Inc., New-York, 1997, xxii+491 pp. | MR | Zbl
[24] H. Karimi, J. Nutini, M. Schmidt, “Linear convergence of gradient and proximal-gradient methods under the Polyak–Łojasiewicz condition”, ECML PKDD 2016: Machine learning and knowledge discovery in databases, Lecture Notes in Comput. Sci., 9851, Springer, Cham, 2016, 795–811 | DOI
[25] D. Drusvyatskiy, A. S. Lewis, “Error bounds, quadratic growth, and linear convergence of proximal methods”, Math. Oper. Res., 43:3 (2018), 919–948 | DOI | MR | Zbl
[26] B. T. Polyak, Vvedenie v optimizatsiyu, Nauka, M., 1983, 384 pp. | MR | Zbl
[27] D. Damek, D. Drusvyatskiy, K. J. MacPhee, C. Paquette, Subgradient methods for sharp weakly convex functions, arXiv: 1803.02461
[28] Xiao Li, Zhihui Zhu, A. Man-Cho So, J. D. Lee, Incremental methods for weakly convex optimization, arXiv: 1907.11687
[29] J. C. Duchi, Feng Ruan, “Stochastic methods for composite and weakly convex optimization problems”, SIAM J. Optim., 28:4 (2018), 3229–3259 ; arXiv: 1703.08570v3 | DOI | MR | Zbl
[30] T. Bonnesen, W. Fenchel, Theorie der konvexen Körper, Ergeb. Math. Grenzgeb., 3, no. 1, Springer, Berlin, 1934, vii+164 pp. | DOI | MR | Zbl
[31] S. I. Dudov, “Systematization of problems on ball estimates of a convex compactum”, Sb. Math., 206:9 (2015), 1260–1280 | DOI | DOI | MR | Zbl
[32] S. I. Dudov, E. A. Meshcheryakova, “On asphericity of convex bodies”, Russian Math. (Iz. VUZ), 59:2 (2015), 36–47 | DOI | MR | Zbl
[33] S. Dudov, M. Osiptsev, “Uniform estimation of a convex body by a fixed-radius ball”, J. Optim. Theory Appl., 171:2 (2016), 465–480 | DOI | MR | Zbl