Characterization of solutions of strong-weak convex programming problems
Sbornik. Mathematics, Tome 212 (2021) no. 6, pp. 782-809 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Finite-dimensional problems of minimizing a strongly or weakly convex function on a strongly or weakly convex set are considered. Necessary and sufficient conditions for solutions of such problems are presented, which are based on estimates for the behaviour of the objective function on the feasible set taking account of the parameters of strong or weak convexity, as well as certain local features of the set and the function. The mathematical programming problem is considered separately for strongly and weakly convex functions. In addition, necessary conditions for a global and a local solution with differentiable objective function are found, in which a ‘strong’ stationarity condition is assumed to hold. Bibliography: 33 titles.
Keywords: strongly and weakly convex sets and functions, subdifferential, Lagrangian function, radius of local minimum, strong stationarity condition.
@article{SM_2021_212_6_a1,
     author = {S. I. Dudov and M. A. Osiptsev},
     title = {Characterization of solutions of strong-weak convex programming problems},
     journal = {Sbornik. Mathematics},
     pages = {782--809},
     year = {2021},
     volume = {212},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_6_a1/}
}
TY  - JOUR
AU  - S. I. Dudov
AU  - M. A. Osiptsev
TI  - Characterization of solutions of strong-weak convex programming problems
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 782
EP  - 809
VL  - 212
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_6_a1/
LA  - en
ID  - SM_2021_212_6_a1
ER  - 
%0 Journal Article
%A S. I. Dudov
%A M. A. Osiptsev
%T Characterization of solutions of strong-weak convex programming problems
%J Sbornik. Mathematics
%D 2021
%P 782-809
%V 212
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2021_212_6_a1/
%G en
%F SM_2021_212_6_a1
S. I. Dudov; M. A. Osiptsev. Characterization of solutions of strong-weak convex programming problems. Sbornik. Mathematics, Tome 212 (2021) no. 6, pp. 782-809. http://geodesic.mathdoc.fr/item/SM_2021_212_6_a1/

[1] J.-P. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259 | DOI | MR | Zbl

[2] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, 2-e izd., Fizmatlit, M., 2007, 438 pp. | Zbl

[3] G. E. Ivanov, Slabo vypuklye mnozhestva i funktsii, Fizmatlit, M., 2006, 351 pp. | Zbl

[4] Yu. G. Reshetnyak, “Ob odnom obobschenii vypuklykh poverkhnostei”, Matem. sb., 40(82):3 (1956), 381–398 | MR | Zbl

[5] N. V. Efimov, S. B. Stechkin, “Opornye svoistva mnozhestv v banakhovykh prostranstvakh i chebyshevskie mnozhestva”, Dokl. AN SSSR, 127:2 (1959), 254–257 | MR | Zbl

[6] H. Federer, “Curvature measures”, Trans. Amer. Math. Soc., 93:3 (1959), 418–491 | DOI | MR | Zbl

[7] F. H. Clarke, R. J. Stern, P. R. Wolenski, “Proximal smoothness and the lower-$C^2$ property”, J. Convex Anal., 2:1-2 (1995), 117–144 | MR | Zbl

[8] R. A. Poliquin, R. T. Rockafellar, “Prox-regular functions in variational analysis”, Trans. Amer. Math. Soc., 348:5 (1996), 1805–1838 | DOI | MR | Zbl

[9] R. A. Poliquin, R. T. Rockafellar, L. Thibault, “Local differentiability of distance functions”, Trans. Amer. Math. Soc., 352:11 (2000), 5231–5249 | DOI | MR | Zbl

[10] F. Bernard, L. Thibault, N. Zlateva, “Characterizations of prox-regular sets in uniformly convex Banach spaces”, J. Convex Anal., 13:3-4 (2006), 525–559 | MR | Zbl

[11] R. Janin, Sur la dualité et la sensibilité dans les problèmes de programmation mathématique, These de Doctorat ès-Sciences Mathématiques, Univ. de Paris, 1974

[12] R. T. Rockafellar, “Favorable classes of Lipschitz continuous functions in subgradient optimization”, Progress in nondifferentiable optimization, IIASA Collaborative Proc. Ser. CP-82, 8, Internat. Inst. Appl. Systems Anal., Laxenburg, 1982, 125–144 | MR | Zbl

[13] F. Bernard, L. Thibault, N. Zlateva, “Prox-regular sets and epigraphs in uniformly convex Banach spaces: various regularities and other properties”, Trans. Amer. Math. Soc., 363:4 (2011), 2211–2247 | DOI | MR | Zbl

[14] Z. Y. Wu, “Sufficient global optimality conditions for weakly convex minimization problems”, J. Global Optim., 39:3 (2007), 427–440 | DOI | MR | Zbl

[15] M. V. Balashov, “About the gradient projection algorithm for a strongly convex function and a proximally smooth set”, J. Convex Anal., 24:2 (2017), 493–500 | MR | Zbl

[16] M. V. Balashov, B. T. Polyak, A. A. Tremba, “Gradient projection and conditional gradient methods for constrained nonconvex minimization”, Numer. Funct. Anal. Optim., 41:7 (2020), 822–849 | DOI | MR | Zbl

[17] F. H. Clarke, Optimization and nonsmooth analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts, A Wiley-Interscience Publication. John Wiley Sons, Inc., New York, 1983, xiii+308 pp. | MR | MR | Zbl | Zbl

[18] V. F. Dem'yanov, L. V. Vasil'ev, Nondifferentiable optimization, Transl. Ser. Math. Engrg., Optimization Software, Inc., Publications Division, New York, 1985, xvii+452 pp. | MR | MR | Zbl | Zbl

[19] V. F. Demyanov, A. M. Rubinov, Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 432 pp. | MR | Zbl

[20] B. N. Pshenichnyi, Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980, 320 pp. | MR | Zbl

[21] D. Pallaschke, S. Rolewicz, Foundations of mathematical optimization. Convex analysis without linearity, Math. Appl., Kluwer Acad. Publ., Dordrechet, 1997, xii+582 pp. | DOI | MR | Zbl

[22] A. Rubinov, Abstract convexity and global optimization, Nonconvex Optim. Appl., 44, Kluwer Acad. Publ., Derrechet, 2000, xviii+490 pp. | DOI | MR | Zbl

[23] I. Singer, Abstract convex analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts, A Wiley-Interscience Publication. John Wiley Sons, Inc., New-York, 1997, xxii+491 pp. | MR | Zbl

[24] H. Karimi, J. Nutini, M. Schmidt, “Linear convergence of gradient and proximal-gradient methods under the Polyak–Łojasiewicz condition”, ECML PKDD 2016: Machine learning and knowledge discovery in databases, Lecture Notes in Comput. Sci., 9851, Springer, Cham, 2016, 795–811 | DOI

[25] D. Drusvyatskiy, A. S. Lewis, “Error bounds, quadratic growth, and linear convergence of proximal methods”, Math. Oper. Res., 43:3 (2018), 919–948 | DOI | MR | Zbl

[26] B. T. Polyak, Vvedenie v optimizatsiyu, Nauka, M., 1983, 384 pp. | MR | Zbl

[27] D. Damek, D. Drusvyatskiy, K. J. MacPhee, C. Paquette, Subgradient methods for sharp weakly convex functions, arXiv: 1803.02461

[28] Xiao Li, Zhihui Zhu, A. Man-Cho So, J. D. Lee, Incremental methods for weakly convex optimization, arXiv: 1907.11687

[29] J. C. Duchi, Feng Ruan, “Stochastic methods for composite and weakly convex optimization problems”, SIAM J. Optim., 28:4 (2018), 3229–3259 ; arXiv: 1703.08570v3 | DOI | MR | Zbl

[30] T. Bonnesen, W. Fenchel, Theorie der konvexen Körper, Ergeb. Math. Grenzgeb., 3, no. 1, Springer, Berlin, 1934, vii+164 pp. | DOI | MR | Zbl

[31] S. I. Dudov, “Systematization of problems on ball estimates of a convex compactum”, Sb. Math., 206:9 (2015), 1260–1280 | DOI | DOI | MR | Zbl

[32] S. I. Dudov, E. A. Meshcheryakova, “On asphericity of convex bodies”, Russian Math. (Iz. VUZ), 59:2 (2015), 36–47 | DOI | MR | Zbl

[33] S. Dudov, M. Osiptsev, “Uniform estimation of a convex body by a fixed-radius ball”, J. Optim. Theory Appl., 171:2 (2016), 465–480 | DOI | MR | Zbl