Mots-clés : Fokker-Planck-Kolmogorov equation
@article{SM_2021_212_6_a0,
author = {V. I. Bogachev and T. I. Krasovitskii and S. V. Shaposhnikov},
title = {On uniqueness of probability solutions of the {Fokker-Planck-Kolmogorov} equation},
journal = {Sbornik. Mathematics},
pages = {745--781},
year = {2021},
volume = {212},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_6_a0/}
}
TY - JOUR AU - V. I. Bogachev AU - T. I. Krasovitskii AU - S. V. Shaposhnikov TI - On uniqueness of probability solutions of the Fokker-Planck-Kolmogorov equation JO - Sbornik. Mathematics PY - 2021 SP - 745 EP - 781 VL - 212 IS - 6 UR - http://geodesic.mathdoc.fr/item/SM_2021_212_6_a0/ LA - en ID - SM_2021_212_6_a0 ER -
V. I. Bogachev; T. I. Krasovitskii; S. V. Shaposhnikov. On uniqueness of probability solutions of the Fokker-Planck-Kolmogorov equation. Sbornik. Mathematics, Tome 212 (2021) no. 6, pp. 745-781. http://geodesic.mathdoc.fr/item/SM_2021_212_6_a0/
[1] A. Albanese, L. Lorenzi, E. Mangino, “$L^p$-uniqueness for elliptic operators with unbounded coefficients in $\mathbb{R}^N$”, J. Funct. Anal., 256:4 (2009), 1238–1257 | DOI | MR | Zbl
[2] D. G. Aronson, “Non-negative solutions of linear parabolic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 22 (1968), 607–694 | MR | Zbl
[3] D. G. Aronson, P. Besala, “Uniqueness of solutions of the Cauchy problem for parabolic equations”, J. Math. Anal. Appl., 13:3 (1966), 516–526 | DOI | MR | Zbl
[4] A. Attalienti, M. Campiti, “Semigroups generated by ordinary differential operators in $L^1(I)$”, Positivity, 8:1 (2004), 11–30 | DOI | MR | Zbl
[5] E. A. Baderko, “O razreshimosti granichnykh zadach dlya parabolicheskikh uravnenii vysokogo poryadka v oblastyakh s krivolineinymi bokovymi granitsami”, Differents. uravneniya, 12:10 (1976), 1781–1792 | MR | Zbl
[6] V. I. Bogachev, “Operatory i polugruppy Ornshteina–Ulenbeka”, UMN, 73:2(440) (2018), 3–74 | DOI | MR | Zbl
[7] V. I. Bogachev, G. Da Prato, M. Röckner, S. V. Shaposhnikov, “On the uniqueness of solutions to continuity equations”, J. Differential Equations, 259:8 (2015), 3854–3873 | DOI | MR | Zbl
[8] V. I. Bogachev, T. I. Krasovitskii, S. V. Shaposhnikov, “O needinstvennosti veroyatnostnykh reshenii dvumernogo statsionarnogo uravneniya Fokkera–Planka–Kolmogorova”, Dokl. RAN, 482:5 (2018), 489–493 | DOI | Zbl
[9] V. I. Bogachev, N. V. Krylov, M. Röckner, “On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions”, Comm. Partial Differential Equations, 26:11-12 (2001), 2037–2080 | MR | Zbl
[10] V. I. Bogachev, N. V. Krylov, M. Rekner, “Ellipticheskie i parabolicheskie uravneniya dlya mer”, UMN, 64:6(390) (2009), 5–116 | DOI | MR | Zbl
[11] V. I. Bogachev, N. V. Krylov, M. Rekner, S. V. Shaposhnikov, Uravneniya Fokkera–Planka–Kolmogorova, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2013, 592 pp.; V. I. Bogachev, N. V. Krylov, M. Röckner, S. V. Shaposhnikov, Fokker–Planck–Kolmogorov equations, Math. Surveys Monogr., 207, Amer. Math. Soc., Providence, RI, 2015, xii+479 pp. | DOI | MR | Zbl
[12] V. I. Bogachev, M. Rekner, S. V. Shaposhnikov, “Globalnaya regulyarnost i otsenki reshenii parabolicheskikh uravnenii”, Teoriya veroyatn. i ee primen., 50:4 (2005), 652–674 ; V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Global regularity and bounds for solutions of parabolic equations for probability measures”, Theory Probab. Appl., 50:4 (2006), 561–581 | DOI | MR | Zbl | DOI
[13] V. I. Bogachev, M. Rekner, S. V. Shaposhnikov, “Otsenki plotnostei statsionarnykh raspredelenii i perekhodnykh veroyatnostei diffuzionnykh protsessov”, Teoriya veroyatn. i ee primen., 52:2 (2007), 240–270 ; V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Estimates of densities of stationary distributions and transition probabilities of diffusion processes”, Theory Probab. Appl., 52:2 (2008), 209–236 | DOI | MR | Zbl | DOI
[14] V. I. Bogachev, M. Rekner, S. V. Shaposhnikov, “Polozhitelnye plotnosti perekhodnykh veroyatnostei diffuzionnykh protsessov”, Teoriya veroyatn. i ee primen., 53:2 (2008), 213–239 ; V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Positive densities of transition probabilities of diffusion processes”, Theory Probab. Appl., 53:2 (2009), 194–215 | DOI | MR | Zbl | DOI
[15] V. I. Bogachev, M. Rekner, S. V. Shaposhnikov, “O problemakh edinstvennosti, svyazannykh s uravneniem Fokkera–Planka–Kolmogorova dlya mer”, Problemy matem. analiza, 61, Tamara Rozhkovskaya, Novosibirsk, 2011, 9–42 | MR | Zbl
[16] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “On uniqueness of solutions to the Cauchy problem for degenerate Fokker–Planck–Kolmogorov equations”, J. Evol. Equ., 13:3 (2013), 577–593 | DOI | MR | Zbl
[17] V. I. Bogachev, M. Rekner, S. V. Shaposhnikov, “Problemy edinstvennosti dlya vyrozhdennykh uravnenii Fokkera–Planka–Kolmogorova”, Problemy matem. analiza, 78, Tamara Rozhkovskaya, Novosibirsk, 2015, 31–46 | MR | Zbl
[18] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Distances between transition probabilities of diffusions and applications to nonlinear Fokker–Planck–Kolmogorov equations”, J. Funct. Anal., 271:5 (2016), 1262–1300 | DOI | MR | Zbl
[19] V. I. Bogachev, S. V. Shaposhnikov, “Representations of solutions to Fokker–Planck–Kolmogorov equations with coefficients of low regularity”, J. Evol. Equ., 20:2 (2020), 355–374 | DOI | MR | Zbl
[20] A. Bove, B. Franchi, E. Obrecht, “Parabolic problems with mixed time dependent lateral conditions”, Comm. Partial Differential Equations, 7:11 (1982), 1253–1288 | DOI | MR | Zbl
[21] A. Bove, B. Franchi, E. Obrecht, “Boundary value problems with mixed lateral conditions for parabolic operators”, Ann. Mat. Pura Appl. (4), 131 (1982), 375–413 | DOI | MR | Zbl
[22] A. S. Cherny, “On the strong and weak solutions of stochastic differential equations governing Bessel processes”, Stochastics Stochastics Rep., 70:3-4 (2000), 213–219 | DOI | MR | Zbl
[23] A. S. Cherny, H.-J. Engelbert, Singular stochastic differential equations, Lecture Notes in Math., 1858, Springer-Verlag, Berlin, 2005, viii+128 pp. | DOI | MR | Zbl
[24] A. Eberle, Uniqueness and non-uniqueness of semigroups generated by singular diffusion operators, Lecture Notes in Math., 1718, Springer-Verlag, Berlin, 1999, viii+262 pp. | DOI | MR | Zbl
[25] A. Eberle, “$L^p$ uniqueness of non-symmetric diffusion operators with singular drift coefficients. I. The finite-dimensional case”, J. Funct. Anal., 173:2 (2000), 328–342 | DOI | MR | Zbl
[26] G. M. Fateeva, “Kraevye zadachi dlya kvazilineinykh vyrozhdayuschikhsya uravnenii parabolicheskogo tipa”, UMN, 22:3(135) (1967), 244–245 | MR
[27] G. M. Fateeva, “O kraevykh zadachakh dlya kvazilineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii”, Matem. sb., 76(118):4 (1968), 537–565 | MR | Zbl
[28] V. Feller, “K teorii stokhasticheskikh protsessov (teoremy suschestvovaniya i edinstvennosti)”, UMN, 1938, no. 5, 57–96 ; W. Feller, “Zur Theorie der stochastischen Prozesse. Existenz- und Eindeutigkeitssätze”, Math. Ann., 113:1 (1937), 113–160 | DOI | MR | Zbl
[29] W. Feller, “The parabolic differential equations and the associated semi-groups of transformations”, Ann. of Math. (2), 55:3 (1952), 468–519 | DOI | MR | Zbl
[30] W. Feller, “Generalized second order differential operators and their lateral conditions”, Illinois J. Math., 1:4 (1957), 459–504 | DOI | MR | Zbl
[31] G. Fichera, “On a unified theory of boundary value problems for elliptic parabolic equations of second order”, Boundary problems in differential equations, Univ. of Wisconsin Press, Madison, WI, 1960, 97–120 | MR | Zbl
[32] A. Friedman, “On the uniqueness of the Cauchy problem for parabolic equations”, Amer. J. Math., 81:2 (1959), 503–511 | DOI | MR | Zbl
[33] A. Fridman, Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968, 427 pp. ; A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964, xiv+347 pp. | Zbl | MR | Zbl
[34] A. K. Guschin, “O zadache Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka s granichnoi funktsiei iz $L_p$”, Matem. sb., 203:1 (2012), 3–30 | DOI | MR | Zbl
[35] A. K. Guschin, “O razreshimosti zadachi Dirikhle dlya neodnorodnogo ellipticheskogo uravneniya vtorogo poryadka”, Matem. sb., 206:10 (2015), 71–102 | DOI | MR | Zbl
[36] A. K. Guschin, “O granichnykh znacheniyakh reshenii ellipticheskogo uravneniya”, Matem. sb., 210:12 (2019), 67–97 | DOI | MR | Zbl
[37] E. Hille, “The abstract Cauchy problem and Cauchy's problem for parabolic differential equations”, J. Anal. Math., 3 (1954), 81–196 | DOI | MR | Zbl
[38] K. Ishige, M. Murata, “Uniqueness of nonnegative solutions of the Cauchy problem for parabolic equations on manifolds or domains”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30:1 (2001), 171–223 | MR | Zbl
[39] A. V. Ivanov, “Kvazilineinye vyrozhdayuschiesya i neravnomerno ellipticheskie i parabolicheskie uravneniya vtorogo poryadka”, Tr. MIAN SSSR, 160, 1982, 3–285 ; A. V. Ivanov, “Quasilinear degenerate and nonuniformly elliptic and parabolic equations of second order”, Proc. Steklov Inst. Math., 160 (1984), 1–288 | MR | Zbl
[40] A. Kolmogoroff, “Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung”, Math. Ann., 104:1 (1931), 415–458 | DOI | MR | Zbl
[41] A. Kolmogoroff, “Zur Theorie der stetigen zufälligen Prozesse”, Math. Ann., 104:1 (1933), 149–160 | DOI | MR | Zbl
[42] T. I. Krasovitskii, “Vyrozhdennye ellipticheskie uravneniya i needinstvennost reshenii uravneniya Kolmogorova”, Dokl. RAN, 487:4 (2019), 361–364 | DOI | Zbl
[43] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. ; O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968, xi+648 pp. | MR | Zbl | MR | Zbl
[44] C. Le Bris, P.-L. Lions, “Existence and uniqueness of solutions to Fokker–Planck type equations with irregular coefficients”, Comm. Partial Differential Equations, 33:7-9 (2008), 1272–1317 | DOI | MR | Zbl
[45] L. D. Lemle, “On the $L^{\infty}$-uniqueness of symmetric diffusion operators on complete non-compact Riemannian manifolds”, J. Geom. Anal., 25:4 (2015), 2375–2385 | DOI | MR | Zbl
[46] G. M. Lieberman, “A mostly elementary proof of Morrey space estimates for elliptic and parabolic equations with VMO coefficients”, J. Funct. Anal., 201:2 (2003), 457–479 | DOI | MR | Zbl
[47] O. A. Manita, S. V. Shaposhnikov, “On the Cauchy problem for Fokker–Planck–Kolmogorov equations with potential terms on arbitrary domains”, J. Dynam. Differential Equations, 28:2 (2016), 493–518 | DOI | MR | Zbl
[48] P. J. Mendez-Hernandez, M. Murata, “Semismall perturbations, semi-intrinsic ultracontractivity, and integral representations of nonnegative solutions for parabolic equations”, J. Funct. Anal., 257:6 (2009), 1799–1827 | DOI | MR | Zbl
[49] G. Metafune, D. Pallara, M. Wacker, “Feller semigroups on $\mathbf R^N$”, Semigroup Forum, 65:2 (2002), 159–205 | DOI | MR | Zbl
[50] M. Murata, “Non-uniqueness of the positive Cauchy problem for parabolic equations”, J. Differential Equations, 123:2 (1995), 343–387 | DOI | MR | Zbl
[51] O. A. Oleinik, E. V. Radkevich, Uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi, Izd-vo Mosk. un-ta, M., 2010, 359 pp.; O. A. Ole\u inik, E. V. Radkevič, Second order equations with nonnegative characteristic form, Plenum Press, New York–London, 1973, vii+259 pp. | DOI | MR
[52] Y. Pinchover, “On uniqueness and nonuniqueness of the positive Cauchy problem for parabolic equations with unbounded coefficients”, Math. Z., 223:4 (1996), 569–586 | DOI | MR | Zbl
[53] Y. Pinchover, “Topics in the theory of positive solutions of second-order elliptic and parabolic partial differential equations”, Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon's 60th birthday, Part 1, Proc. Sympos. Pure Math., 76, Part 1, Amer. Math. Soc., Providence, RI, 2007, 329–355 | DOI | MR | Zbl
[54] M. H. Protter, H. F. Weinberger, Maximum principles in differential equations, Corr. reprint of the 1967 original, Springer-Verlag, New York, 1984, x+261 pp. | DOI | MR | Zbl
[55] E. V. Radkevich, “Vtoraya kraevaya zadacha dlya uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1967, no. 4, 3–11 | MR | Zbl
[56] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Grundlehren Math. Wiss., 293, 3rd ed., Springer-Verlag, Berlin, 1999, xiv+602 pp. | DOI | MR | Zbl
[57] G. Savaré, “Parabolic problems with mixed variable lateral conditions: an abstract approach”, J. Math. Pures Appl. (9), 76:4 (1997), 321–351 | DOI | MR | Zbl
[58] S. Sawyer, “A Fatou theorem for the general one-dimensional parabolic equation”, Indiana Univ. Math. J., 24:5 (1974/75), 451–498 | DOI | MR | Zbl
[59] S. V. Shaposhnikov, “O edinstvennosti integriruemykh i veroyatnostnykh reshenii zadachi Koshi dlya uravnenii Fokkera–Planka–Kolmogorova”, Dokl. RAN, 439:3 (2011), 323–328 | MR | Zbl
[60] S. V. Shaposhnikov, “O edinstvennosti veroyatnostnogo resheniya zadachi Koshi dlya uravneniya Fokkera–Planka–Kolmogorova”, Teoriya veroyatn. i ee primen., 56:1 (2011), 77–99 ; S. V. Shaposhnikov, “On uniqueness of a probability solution to the Cauchy problem for the Fokker–Planck–Kolmogorov equation”, Theory Probab. Appl., 56:1 (2012), 96–115 | MR | Zbl | DOI
[61] G. N. Smirnova, “O klassakh edinstvennosti resheniya zadachi Koshi dlya parabolicheskikh uravnenii”, Dokl. AN SSSR, 153:6 (1963), 1269–1272 | MR | Zbl
[62] G. N. Smirnova, “Zadachi Koshi dlya parabolicheskikh uravnenii, vyrozhdayuschikhsya na beskonechnosti”, Matem. sb., 70(112):4 (1966), 591–604 ; G. N. Smirnova, “Cauchy problems for parabolic equations degenerating at infinity”, Amer. Math. Soc. Transl. Ser. 2, 72, Amer. Math. Soc., Providence, RI, 1968, 119–134 | MR | Zbl | DOI
[63] V. A. Solonnikov, “O kraevykh zadachakh dlya lineinykh parabolicheskikh sistem differentsialnykh uravnenii obschego vida”, Kraevye zadachi matematicheskoi fiziki. 3. O kraevykh zadachakh dlya lineinykh parabolicheskikh sistem differentsialnykh uravnenii obschego vida, Tr. MIAN SSSR, 83, 1965, 3–163 | MR | Zbl
[64] W. Stannat, “(Nonsymmetric) Dirichlet operators on $L^1$: existence, uniqueness and associated Markov processes”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28:1 (1999), 99–140 | MR | Zbl
[65] A. Tychonoff, “Théorèmes d'unicité pour l'équation de la chaleur”, Matem. sb., 42:2 (1935), 199–216 | Zbl
[66] A. D. Venttsel, “Polugruppy operatorov, sootvetstvuyuschie obobschennomu differentsialnomu operatoru vtorogo poryadka”, Dokl. AN SSSR, 111:2 (1956), 269–272 | MR | Zbl
[67] A. D. Venttsel, “O granichnykh usloviyakh dlya mnogomernykh diffuzionnykh protsessov”, Teoriya veroyatn. i ee primen., 4:2 (1959), 172–185 | MR | Zbl
[68] D. V. Widder, “Positive temperatures on an infinite rod”, Trans. Amer. Math. Soc., 55 (1944), 85–95 | DOI | MR | Zbl
[69] Liming Wu, Yiping Zhang, “A new topological approach to the $L^\infty$-uniqueness of operators and the $L^1$-uniqueness of Fokker–Planck equations”, J. Funct. Anal., 241:2 (2006), 557–610 | DOI | MR | Zbl
[70] K. Yosida, “Integration of Fokker–Planck's equation in a compact Riemannian space”, Ark. Mat., 1 (1949), 71–75 | DOI | MR | Zbl