@article{SM_2021_212_5_a5,
author = {V. N. Pavlenko and D. K. Potapov},
title = {Variational method for elliptic systems with discontinuous nonlinearities},
journal = {Sbornik. Mathematics},
pages = {726--744},
year = {2021},
volume = {212},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_5_a5/}
}
V. N. Pavlenko; D. K. Potapov. Variational method for elliptic systems with discontinuous nonlinearities. Sbornik. Mathematics, Tome 212 (2021) no. 5, pp. 726-744. http://geodesic.mathdoc.fr/item/SM_2021_212_5_a5/
[1] V. N. Pavlenko, “On the solvability of some nonlinear equations with discontinuous operators”, Soviet Math. Dokl., 13 (1972), 846–850 | MR | Zbl
[2] M. M. Vaĭnberg, Variational method and method of monotone operators in the theory of nonlinear equations, Halsted Press (A division of John Wiley Sons), New York–Toronto, ON; Israel Program for Scientific Translations, Jerusalem–London, 1973, xi+356 pp. | MR | MR | Zbl | Zbl
[3] F. J. S. A. Correa, J. V. A. Gonçalves, “Sublinear elliptic systems with discontinuous nonlinearities”, Appl. Anal., 44:1-2 (1992), 37–50 | DOI | MR | Zbl
[4] Kung-Ching Chang, “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. Appl., 80:1 (1981), 102–129 | DOI | MR | Zbl
[5] C. O. Alves, D. C. de Morais Filho, M. A. S. Souto, “An application of the dual variational principle to a Hamiltonian system with discontinuous nonlinearities”, Electron. J. Differential Equations, 2004 (2004), 46, 12 pp. | MR | Zbl
[6] Kaimin Teng, “Existence and multiplicity results for some elliptic systems with discontinuous nonlinearities”, Nonlinear Anal., 75:5 (2012), 2975–2987 | DOI | MR | Zbl
[7] Liu Zhenhai, “On elliptic systems with discontinuous nonlinearities”, Period. Math. Hungar., 30:3 (1995), 211–223 | DOI | MR | Zbl
[8] M. A. Krasnosel'skiĭ, A. V. Pokrovskiĭ, “Regular solutions of equations with discontinuous nonlinearities”, Soviet Math. Dokl., 17:1 (1976), 128–132 | MR | Zbl
[9] M. A. Krasnosel'skiĭ, A. V. Pokrovskiĭ, “Elliptic equations with discontinuous nonlinearities”, Dokl. Math., 51:3 (1995), 415–418 | MR | Zbl
[10] M. A. Krasnosel'skii, A. V. Lusnikov, “Regular fixed points and stable invariant subsets of monotone operators”, Funct. Anal. Appl., 30:3 (1996), 174–183 | DOI | DOI | MR | Zbl
[11] V. N. Pavlenko, D. K. Potapov, “The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities”, Sb. Math., 206:9 (2015), 1281–1298 | DOI | DOI | MR | Zbl
[12] D. K. Potapov, “Bifurcation problems for equations of elliptic type with discontinuous nonlinearities”, Math. Notes, 90:2 (2011), 260–264 | DOI | DOI | MR | Zbl
[13] D. K. Potapov, V. V. Yevstafyeva, “Lavrent'ev problem for separated flows with an external perturbation”, Electron. J. Differential Equations, 2013 (2013), 255, 6 pp. | MR | Zbl
[14] D. K. Potapov, “On one problem of electrophysics with discontinuous nonlinearity”, Differ. Equ., 50:3 (2014), 419–422 | DOI | DOI | MR | Zbl
[15] V. N. Pavlenko, D. K. Potapov, “Elenbaas problem of electric arc discharge”, Math. Notes, 103:1 (2018), 89–95 | DOI | DOI | MR | Zbl
[16] V. N. Pavlenko, “Variatsionnyi metod dlya uravnenii s razryvnymi operatorami”, Vestnik ChelGU, 1994, no. 2, 87–95 | MR | Zbl
[17] V. N. Pavlenko, D. K. Potapov, “Existence of a ray of eigenvalues for equations with discontinuous operators”, Siberian Math. J., 42:4 (2001), 766–773 | DOI | MR | Zbl
[18] V. N. Pavlenko, “Existence theorems for elliptic variational inequalities with quasipotential operators”, Differ. Equ., 24:8 (1988), 913–916 | MR | Zbl
[19] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983, xiii+513 pp. | DOI | MR | MR | Zbl | Zbl
[20] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, NY, 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | Zbl | Zbl
[21] D. K. Potapov, “Spectral problems for variational inequalities with discontinuous operators”, Math. Notes, 93:2 (2013), 288–296 | DOI | DOI | MR | Zbl
[22] I. V. Shragin, “Conditions for measurability of superpositions”, Soviet Math. Dokl., 12 (1971), 465–470 | MR | Zbl