Mots-clés : $A$-endomorphism
@article{SM_2021_212_5_a4,
author = {V. Z. Grines and E. V. Zhuzhoma and E. D. Kurenkov},
title = {On $DA$-endomorphisms of the two-dimensional torus},
journal = {Sbornik. Mathematics},
pages = {698--725},
year = {2021},
volume = {212},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_5_a4/}
}
V. Z. Grines; E. V. Zhuzhoma; E. D. Kurenkov. On $DA$-endomorphisms of the two-dimensional torus. Sbornik. Mathematics, Tome 212 (2021) no. 5, pp. 698-725. http://geodesic.mathdoc.fr/item/SM_2021_212_5_a4/
[1] D. V. Anosov, “Gladkie dinamicheskie sistemy. Gl. 1. Iskhodnye ponyatiya”, Dinamicheskie sistemy – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 1, VINITI, M., 1985, 156–178 ; Гл. 2. Элементарная теория, 178–204 ; D. V. Anosov, “Smooth dynamical systems”, Ch. 1, 2, Dynamical systems I, Encyclopaedia Math. Sci., 1, Springer, Berlin, 1988 | MR | Zbl | MR | Zbl
[2] D. V. Anosov, E. V. Zhuzhoma, “Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings”, Proc. Steklov Inst. Math., 249 (2005), 1–221 | MR | Zbl
[3] S. Kh. Aranson, G. R. Belitsky, E. V. Zhuzhoma, Introduction to the qualitative theory of dynamical systems on surfaces, Transl. Math. Monogr., 153, Amer. Math. Soc., Providence, RI, 1996, xiv+325 pp. | DOI | MR | Zbl
[4] S. Kh. Aranson, V. Z. Grines, “The topological classification of cascades on closed two-dimensional manifolds”, Russian Math. Surveys, 45:1 (1990), 1–35 | DOI | MR | Zbl
[5] V. Z. Grines, “On topological conjugacy of diffeomorphisms of a two-dimensional manifold onto one-dimensional orientable basic sets. I”, Trans. Moscow Math. Soc., 32 (1977), 31–56 | MR | Zbl
[6] V. Z. Grines, “On the topological conjugacy of diffeomorphisms of a two-dimensional manifold on one-dimensional orientable basic sets. II”, Trans. Moscow Math. Soc., 34 (1978), 237–245 | MR | Zbl
[7] V. Z. Grines, Kh. Kh. Kalai, “Diffeomorphisms of two-dimensional manifolds with spatially situated basic sets”, Russian Math. Surveys, 40:1 (1985), 221–222 | DOI | MR | Zbl
[8] V. Z. Grines, “Topological classification of one-dimensional attractors and repellers of $A$-diffeomorphisms of surfaces by means of automorphisms of fundamental groups of supports”, J. Math. Sci. (N.Y.), 95:5 (1999), 2523–2545 | DOI | MR | Zbl
[9] V. Z. Grines, E. V. Zhuzhoma, E. D. Kurenkov, “Khirurgicheskaya operatsiya dlya endomorfizma Anosova dvumernogo tora ne daet rastyagivayuschiisya attraktor”, Dinamicheskie sistemy, 8(36):3 (2018), 235–244
[10] V. Z. Grines, O. V. Pochinka, Vvedenie v topologicheskuyu klassifikatsiyu diffeomorfizmov na mnogoobraziyakh razmernosti dva i tri, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2011, 424 pp.
[11] A. Yu. Zhirov, “Hyperbolic attractors of diffeomorphisms of orientable surfaces”, Russian Acad. Sci. Sb. Math., 82:1 (1995), 135–174 | DOI | DOI | MR | Zbl
[12] E. D. Kurenkov, “O suschestvovanii endomorfizma dvumernogo tora so strogo invariantnym szhimayuschimsya repellerom”, Zhurnal SVMO, 19:1 (2017), 60–66 | DOI | Zbl
[13] A. Maier, “O traektoriyakh na orientiruemykh poverkhnostyakh”, Matem. sb., 12(54):1 (1943), 71–84 | MR | Zbl
[14] R. V. Plykin, “On the geometry of hyperbolic attractors of smooth cascades”, Russian Math. Surveys, 39:6 (1984), 85–131 | DOI | MR | Zbl
[15] A. Puankare, O krivykh, opredelyaemykh differentsialnymi uravneniyami, GITTL, M.–L., 1947, 392 pp.; H. Poincaré, “Sur les courbes définies par les équations différentielles”, C. R. Acad. Sci. Paris, XCIII, XCVIII (1882, 1884), 951–952, 287–289 ; J. Math. Pures Appl. (4), I, II (1885, 1886), 167–244, 151–211 | Zbl | Zbl
[16] W. Hurewicz, “Über den sogenannten Produktsatz der Dimensionstheorie”, Math. Ann., 102:1 (1930), 305–312 | DOI | MR | Zbl
[17] G. Ikegami, “Nondensity of $\Omega$-stable endomorphisms and rough $\Omega$-stabilities for endomorphisms”, Dynamical systems (Santiago, 1990), Pitman Res. Notes Math. Ser., 285, Longman Sci. Tech., Harlow, 1993, 52–91 | MR | Zbl
[18] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl
[19] F. Przytycki, “Anosov endomorphisms”, Studia Math., 58:3 (1976), 249–285 | DOI | MR | Zbl
[20] C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, Stud. Adv. Math., 2nd corr. ed., CRC Press, Boca Raton, FL, 1999, xiv+506 pp. | MR | Zbl
[21] L. P. Šilnikov, “On a Poincaré–Birkhoff problem”, Math. USSR-Sb., 3:3 (1967), 353–371 | DOI | MR | Zbl
[22] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | MR | MR | Zbl
[23] M. Shub, “Endomorphisms of compact differentiable manifolds”, Amer. J. Math., 91:1 (1969), 175–199 | DOI | MR | Zbl