On $DA$-endomorphisms of the two-dimensional torus
Sbornik. Mathematics, Tome 212 (2021) no. 5, pp. 698-725 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that in each homotopy class of continuous mappings of the two-dimensional torus to itself that induce a hyperbolic action on the fundamental group, as long as it is free of expanding mappings, there exists an $A$-endomorphism $f$ whose nonwandering set consists of an attracting hyperbolic sink and a nontrivial one-dimensional collapsing repeller, which is a one-dimensional orientable lamination, locally homeomorphic to the direct product of a Cantor set and a line segment. Moreover, the unstable $Df$-invariant subbundle of the tangent space to the repeller has the property of uniqueness. Bibliography: 23 titles.
Keywords: repeller, wandering set.
Mots-clés : $A$-endomorphism
@article{SM_2021_212_5_a4,
     author = {V. Z. Grines and E. V. Zhuzhoma and E. D. Kurenkov},
     title = {On $DA$-endomorphisms of the two-dimensional torus},
     journal = {Sbornik. Mathematics},
     pages = {698--725},
     year = {2021},
     volume = {212},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_5_a4/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. V. Zhuzhoma
AU  - E. D. Kurenkov
TI  - On $DA$-endomorphisms of the two-dimensional torus
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 698
EP  - 725
VL  - 212
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_5_a4/
LA  - en
ID  - SM_2021_212_5_a4
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. V. Zhuzhoma
%A E. D. Kurenkov
%T On $DA$-endomorphisms of the two-dimensional torus
%J Sbornik. Mathematics
%D 2021
%P 698-725
%V 212
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2021_212_5_a4/
%G en
%F SM_2021_212_5_a4
V. Z. Grines; E. V. Zhuzhoma; E. D. Kurenkov. On $DA$-endomorphisms of the two-dimensional torus. Sbornik. Mathematics, Tome 212 (2021) no. 5, pp. 698-725. http://geodesic.mathdoc.fr/item/SM_2021_212_5_a4/

[1] D. V. Anosov, “Gladkie dinamicheskie sistemy. Gl. 1. Iskhodnye ponyatiya”, Dinamicheskie sistemy – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 1, VINITI, M., 1985, 156–178 ; Гл. 2. Элементарная теория, 178–204 ; D. V. Anosov, “Smooth dynamical systems”, Ch. 1, 2, Dynamical systems I, Encyclopaedia Math. Sci., 1, Springer, Berlin, 1988 | MR | Zbl | MR | Zbl

[2] D. V. Anosov, E. V. Zhuzhoma, “Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings”, Proc. Steklov Inst. Math., 249 (2005), 1–221 | MR | Zbl

[3] S. Kh. Aranson, G. R. Belitsky, E. V. Zhuzhoma, Introduction to the qualitative theory of dynamical systems on surfaces, Transl. Math. Monogr., 153, Amer. Math. Soc., Providence, RI, 1996, xiv+325 pp. | DOI | MR | Zbl

[4] S. Kh. Aranson, V. Z. Grines, “The topological classification of cascades on closed two-dimensional manifolds”, Russian Math. Surveys, 45:1 (1990), 1–35 | DOI | MR | Zbl

[5] V. Z. Grines, “On topological conjugacy of diffeomorphisms of a two-dimensional manifold onto one-dimensional orientable basic sets. I”, Trans. Moscow Math. Soc., 32 (1977), 31–56 | MR | Zbl

[6] V. Z. Grines, “On the topological conjugacy of diffeomorphisms of a two-dimensional manifold on one-dimensional orientable basic sets. II”, Trans. Moscow Math. Soc., 34 (1978), 237–245 | MR | Zbl

[7] V. Z. Grines, Kh. Kh. Kalai, “Diffeomorphisms of two-dimensional manifolds with spatially situated basic sets”, Russian Math. Surveys, 40:1 (1985), 221–222 | DOI | MR | Zbl

[8] V. Z. Grines, “Topological classification of one-dimensional attractors and repellers of $A$-diffeomorphisms of surfaces by means of automorphisms of fundamental groups of supports”, J. Math. Sci. (N.Y.), 95:5 (1999), 2523–2545 | DOI | MR | Zbl

[9] V. Z. Grines, E. V. Zhuzhoma, E. D. Kurenkov, “Khirurgicheskaya operatsiya dlya endomorfizma Anosova dvumernogo tora ne daet rastyagivayuschiisya attraktor”, Dinamicheskie sistemy, 8(36):3 (2018), 235–244

[10] V. Z. Grines, O. V. Pochinka, Vvedenie v topologicheskuyu klassifikatsiyu diffeomorfizmov na mnogoobraziyakh razmernosti dva i tri, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2011, 424 pp.

[11] A. Yu. Zhirov, “Hyperbolic attractors of diffeomorphisms of orientable surfaces”, Russian Acad. Sci. Sb. Math., 82:1 (1995), 135–174 | DOI | DOI | MR | Zbl

[12] E. D. Kurenkov, “O suschestvovanii endomorfizma dvumernogo tora so strogo invariantnym szhimayuschimsya repellerom”, Zhurnal SVMO, 19:1 (2017), 60–66 | DOI | Zbl

[13] A. Maier, “O traektoriyakh na orientiruemykh poverkhnostyakh”, Matem. sb., 12(54):1 (1943), 71–84 | MR | Zbl

[14] R. V. Plykin, “On the geometry of hyperbolic attractors of smooth cascades”, Russian Math. Surveys, 39:6 (1984), 85–131 | DOI | MR | Zbl

[15] A. Puankare, O krivykh, opredelyaemykh differentsialnymi uravneniyami, GITTL, M.–L., 1947, 392 pp.; H. Poincaré, “Sur les courbes définies par les équations différentielles”, C. R. Acad. Sci. Paris, XCIII, XCVIII (1882, 1884), 951–952, 287–289 ; J. Math. Pures Appl. (4), I, II (1885, 1886), 167–244, 151–211 | Zbl | Zbl

[16] W. Hurewicz, “Über den sogenannten Produktsatz der Dimensionstheorie”, Math. Ann., 102:1 (1930), 305–312 | DOI | MR | Zbl

[17] G. Ikegami, “Nondensity of $\Omega$-stable endomorphisms and rough $\Omega$-stabilities for endomorphisms”, Dynamical systems (Santiago, 1990), Pitman Res. Notes Math. Ser., 285, Longman Sci. Tech., Harlow, 1993, 52–91 | MR | Zbl

[18] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl

[19] F. Przytycki, “Anosov endomorphisms”, Studia Math., 58:3 (1976), 249–285 | DOI | MR | Zbl

[20] C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, Stud. Adv. Math., 2nd corr. ed., CRC Press, Boca Raton, FL, 1999, xiv+506 pp. | MR | Zbl

[21] L. P. Šilnikov, “On a Poincaré–Birkhoff problem”, Math. USSR-Sb., 3:3 (1967), 353–371 | DOI | MR | Zbl

[22] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | MR | MR | Zbl

[23] M. Shub, “Endomorphisms of compact differentiable manifolds”, Amer. J. Math., 91:1 (1969), 175–199 | DOI | MR | Zbl