On $DA$-endomorphisms of the two-dimensional torus
Sbornik. Mathematics, Tome 212 (2021) no. 5, pp. 698-725

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that in each homotopy class of continuous mappings of the two-dimensional torus to itself that induce a hyperbolic action on the fundamental group, as long as it is free of expanding mappings, there exists an $A$-endomorphism $f$ whose nonwandering set consists of an attracting hyperbolic sink and a nontrivial one-dimensional collapsing repeller, which is a one-dimensional orientable lamination, locally homeomorphic to the direct product of a Cantor set and a line segment. Moreover, the unstable $Df$-invariant subbundle of the tangent space to the repeller has the property of uniqueness. Bibliography: 23 titles.
Keywords: repeller, wandering set.
Mots-clés : $A$-endomorphism
@article{SM_2021_212_5_a4,
     author = {V. Z. Grines and E. V. Zhuzhoma and E. D. Kurenkov},
     title = {On $DA$-endomorphisms of the two-dimensional torus},
     journal = {Sbornik. Mathematics},
     pages = {698--725},
     publisher = {mathdoc},
     volume = {212},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_5_a4/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. V. Zhuzhoma
AU  - E. D. Kurenkov
TI  - On $DA$-endomorphisms of the two-dimensional torus
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 698
EP  - 725
VL  - 212
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_5_a4/
LA  - en
ID  - SM_2021_212_5_a4
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. V. Zhuzhoma
%A E. D. Kurenkov
%T On $DA$-endomorphisms of the two-dimensional torus
%J Sbornik. Mathematics
%D 2021
%P 698-725
%V 212
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_5_a4/
%G en
%F SM_2021_212_5_a4
V. Z. Grines; E. V. Zhuzhoma; E. D. Kurenkov. On $DA$-endomorphisms of the two-dimensional torus. Sbornik. Mathematics, Tome 212 (2021) no. 5, pp. 698-725. http://geodesic.mathdoc.fr/item/SM_2021_212_5_a4/