A~trace formula for higher order ordinary differential operators
Sbornik. Mathematics, Tome 212 (2021) no. 5, pp. 676-697

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a first-order trace formula for a higher order differential operator on a closed interval in the case where the perturbation operator is the operator of multiplication by a finite complex-valued charge. For operators of even orders $n\geqslant4$, the result contains a term of new type, previously unknown. Bibliography: 15 titles.
Keywords: regularized trace, Birkhoff regularity.
@article{SM_2021_212_5_a3,
     author = {E. D. Gal'kovskii and A. I. Nazarov},
     title = {A~trace formula for higher order ordinary differential operators},
     journal = {Sbornik. Mathematics},
     pages = {676--697},
     publisher = {mathdoc},
     volume = {212},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_5_a3/}
}
TY  - JOUR
AU  - E. D. Gal'kovskii
AU  - A. I. Nazarov
TI  - A~trace formula for higher order ordinary differential operators
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 676
EP  - 697
VL  - 212
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_5_a3/
LA  - en
ID  - SM_2021_212_5_a3
ER  - 
%0 Journal Article
%A E. D. Gal'kovskii
%A A. I. Nazarov
%T A~trace formula for higher order ordinary differential operators
%J Sbornik. Mathematics
%D 2021
%P 676-697
%V 212
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_5_a3/
%G en
%F SM_2021_212_5_a3
E. D. Gal'kovskii; A. I. Nazarov. A~trace formula for higher order ordinary differential operators. Sbornik. Mathematics, Tome 212 (2021) no. 5, pp. 676-697. http://geodesic.mathdoc.fr/item/SM_2021_212_5_a3/