A trace formula for higher order ordinary differential operators
Sbornik. Mathematics, Tome 212 (2021) no. 5, pp. 676-697 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain a first-order trace formula for a higher order differential operator on a closed interval in the case where the perturbation operator is the operator of multiplication by a finite complex-valued charge. For operators of even orders $n\geqslant4$, the result contains a term of new type, previously unknown. Bibliography: 15 titles.
Keywords: regularized trace, Birkhoff regularity.
@article{SM_2021_212_5_a3,
     author = {E. D. Gal'kovskii and A. I. Nazarov},
     title = {A~trace formula for higher order ordinary differential operators},
     journal = {Sbornik. Mathematics},
     pages = {676--697},
     year = {2021},
     volume = {212},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_5_a3/}
}
TY  - JOUR
AU  - E. D. Gal'kovskii
AU  - A. I. Nazarov
TI  - A trace formula for higher order ordinary differential operators
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 676
EP  - 697
VL  - 212
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_5_a3/
LA  - en
ID  - SM_2021_212_5_a3
ER  - 
%0 Journal Article
%A E. D. Gal'kovskii
%A A. I. Nazarov
%T A trace formula for higher order ordinary differential operators
%J Sbornik. Mathematics
%D 2021
%P 676-697
%V 212
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2021_212_5_a3/
%G en
%F SM_2021_212_5_a3
E. D. Gal'kovskii; A. I. Nazarov. A trace formula for higher order ordinary differential operators. Sbornik. Mathematics, Tome 212 (2021) no. 5, pp. 676-697. http://geodesic.mathdoc.fr/item/SM_2021_212_5_a3/

[1] M. A. Naimark, Linear differential operators, v. I, II, Frederick Ungar Publishing Co., New York, 1967, 1968, xiii+144 pp., xv+352 pp. | MR | MR | MR | Zbl | Zbl

[2] A. A. Shkalikov, “Boundary problems for ordinary differential equations with parameter in the boundary conditions”, J. Soviet Math., 33:6 (1986), 1311–1342 | DOI | MR | Zbl

[3] I. M. Gelfand, B. M. Levitan, “Ob odnom prostom tozhdestve dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, Dokl. AN SSSR, 88:4 (1953), 593–596 | MR | Zbl

[4] V. A. Sadovnichii, V. E. Podolskii, “Traces of operators”, Russian Math. Surveys, 61:5 (2006), 885–953 | DOI | DOI | MR | Zbl

[5] A. I. Nazarov, D. M. Stolyarov, P. B. Zatitskiy, “The Tamarkin equiconvergence theorem and a first-order trace formula for regular differential operators revisited”, J. Spectr. Theory, 4:2 (2014), 365–389 | DOI | MR | Zbl

[6] R. F. Shevchenko, “On the trace of a differential operator”, Soviet Math. Dokl., 6 (1965), 1183–1186 | MR | Zbl

[7] A. M. Savchuk, “First-order regularised trace of the Sturm–Liouville operator with $\delta$-potential”, Russian Math. Surveys, 55:6 (2000), 1168–1169 | DOI | DOI | MR | Zbl

[8] A. M. Savchuk, A. A. Shkalikov, “Trace formula for Sturm–Liouville operators with singular potentials”, Math. Notes, 69:3 (2001), 387–400 | DOI | DOI | MR | Zbl

[9] V. A. Vinokurov, V. A. Sadovnichii, “The asymptotics of eigenvalues and eigenfunctions and a trace formula for a potential with delta functions”, Differ. Equ., 38:6 (2002), 772–789 | DOI | MR | Zbl

[10] N. N. Konechnaya, T. A. Safonova, R. N. Tagirova, “Asimptotika sobstvennykh znachenii i regulyarizovannyi sled pervogo poryadka operatora Shturma–Liuvillya s $\delta$-potentsialom”, Vestnik SAFU. Ser. Estestv. nauki, 2016, no. 1, 104–113 | DOI

[11] P. Djakov, B. Mityagin, “Trace formula and spectral Riemann surfaces for a class of tri-diagonal matrices”, J. Approx. Theory, 139:1-2 (2006), 293–326 | DOI | MR | Zbl

[12] E. D. Gal'kovskiĭ, A. I. Nazarov, “A general trace formula for a differential operator on a segment with zero order coefficient perturbed by a finite signed measure”, St. Petersburg Math. J., 30:3 (2019), 411–427 | DOI | MR | Zbl

[13] E. D. Gal'kovskiĭ, “Trace formula for a high-order differential operator on an interval under a perturbation of the lower-order term by a finite charge”, Funct. Anal. Appl., 53:2 (2019), 129–132 | DOI | DOI | MR | Zbl

[14] A. I. Nazarov, “Exact $L_2$-small ball asymptotics of Gaussian processes and the spectrum of boundary-value problems”, J. Theoret. Probab., 22:3 (2009), 640–665 | DOI | MR | Zbl

[15] A. I. Nazarov, Ya. Yu. Nikitin, “Exact $L_2$-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems”, Probab. Theory Related Fields, 129:4 (2004), 469–494 | DOI | MR | Zbl