Interpolation sequences and nonspanning systems of exponentials on curves
Sbornik. Mathematics, Tome 212 (2021) no. 5, pp. 655-675 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Interpolation sequences of the form $\{\pm\lambda_n\}$ $(\lambda_n > 0)$ are investigated, and also the problem of when the system of exponentials $\{e^{\pm\lambda_n z}\}$ is nonspanning on the family of arbitrary rectifiable curves in the uniform norm. In terms of the interpolation nodes (or equivalently, the exponents of the system of exponentials) a criterion for the interpolation problem to be solvable is established and the strong nonspanning property of $\{e^{\pm\lambda_n z}\}$ is proved. This significantly improves some known results, in particular, results due to Korevaar, Dixon and Berndtsson. Bibliography: 23 titles.
Keywords: $\overline{\partial}$-problem, strong nonspanning property of a systems of exponentials
Mots-clés : interpolation sequence, majorant in the convergence class.
@article{SM_2021_212_5_a2,
     author = {R. A. Gaisin},
     title = {Interpolation sequences and nonspanning systems of exponentials on curves},
     journal = {Sbornik. Mathematics},
     pages = {655--675},
     year = {2021},
     volume = {212},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_5_a2/}
}
TY  - JOUR
AU  - R. A. Gaisin
TI  - Interpolation sequences and nonspanning systems of exponentials on curves
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 655
EP  - 675
VL  - 212
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_5_a2/
LA  - en
ID  - SM_2021_212_5_a2
ER  - 
%0 Journal Article
%A R. A. Gaisin
%T Interpolation sequences and nonspanning systems of exponentials on curves
%J Sbornik. Mathematics
%D 2021
%P 655-675
%V 212
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2021_212_5_a2/
%G en
%F SM_2021_212_5_a2
R. A. Gaisin. Interpolation sequences and nonspanning systems of exponentials on curves. Sbornik. Mathematics, Tome 212 (2021) no. 5, pp. 655-675. http://geodesic.mathdoc.fr/item/SM_2021_212_5_a2/

[1] A. F. Leontev, Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980, 384 pp. | MR | Zbl

[2] J. Korevaar, “Müntz approximation on arcs and Macintyre exponents”, Complex analysis Joensuu 1978 (Univ. Joensuu, Joensuu, 1978), Lecture Notes in Math., 747, Springer, Berlin, 1979, 205–218 | DOI | MR | Zbl

[3] J. Korevaar, “Approximation on curves by linear combinations of exponentials”, Approximation theory (Univ. Texas, Austin, TX, 1973), Academic Press, New York, 1973, 387–393 | MR | Zbl

[4] A. F. Leont'ev, “On the completeness of a system of exponents on a curve”, Siberian Math. J., 15:5 (1974), 776–784 | DOI | MR | Zbl

[5] P. Malliavin, J. A. Siddiqi, “Approximation polynomiale sur un arc analytique dans le plan complexe”, C. R. Acad. Sci. Paris Sér. A-B, 273 (1971), A105–A108 | MR | Zbl

[6] J. A. Siddiqi, “Approximation polynomiale sur un arc dans le plan complexe”, C. R. Acad. Sci. Paris Sér. A-B, 277 (1973), A731–A733 | MR | Zbl

[7] P. Malliavin, J. A. Siddiqi, “Classes de fonctions monogènes et approximation par des sommes d'exponentielles sur un arc rectifiable de $\mathbf{C}$”, C. R. Acad. Sci. Paris Sér. A-B, 282:18 (1976), A1091–A1094 | MR | Zbl

[8] A. Baillette, J. A. Siddiqi, “Approximation de fonctions par des sommes d'exponentielles sur un arc rectifiable”, J. Analyse Math., 40 (1981), 263–268 | DOI | MR | Zbl

[9] J. A. Siddiqi, “Non-spanning sequences of exponentials on rectifiable plane arcs”, Linear and complex analysis. Problem book, Lecture Notes in Math., 1043, Springer-Verlag, Berlin, 1984, 555–556 | DOI | MR | Zbl

[10] A. M. Gaĭsin, I. G. Kinzyabulatov, “A Levinson–Sjöberg type theorem. Applications”, Sb. Math., 199:7 (2008), 985–1007 | DOI | DOI | MR | Zbl

[11] J. Korevaar, M. Dixon, “Nonspanning sets of exponentials on curves”, Acta Math. Acad. Sci. Hungar., 33:1-2 (1979), 89–100 | DOI | MR | Zbl

[12] A. M. Gaĭsin, “Strong incompleteness of a system of exponentials, and Macintyre's problem”, Math. USSR-Sb., 73:2 (1992), 305–318 | DOI | MR | Zbl

[13] A. M. Gaisin, “Levinson's condition in the theory of entire functions: equivalent statements”, Math. Notes, 83:3 (2008), 317–326 | DOI | DOI | MR | Zbl

[14] A. M. Gaĭsin, R. A. Gaĭsin, “Noncomplete systems of exponentials on arcs and Carleman nonquasianalytic classes. II”, St. Petersburg Math. J., 27:1 (2016), 33–50 | DOI | MR | Zbl

[15] A. M. Gaisin, Zh. G. Rakhmatullina, “Veschestvennye posledovatelnosti, lakunarnye v smysle Feiera”, Ufimsk. matem. zhurn., 2:2 (2010), 27–40 | Zbl

[16] R. A. Gaisin, “Pavlov–Korevaar–Dixon interpolation problem with majorant in convergence class”, Ufa Math. J., 9:4 (2017), 22–34 | DOI | MR | Zbl

[17] A. M. Gaisin, Teoremy tipa Borelya–Nevanlinny. Primeneniya, RITs BashGU, Ufa, 2010, 82 pp.

[18] A. M. Gaisin, Asimptoticheskie svoistva funktsii, zadannykh ryadami eksponent, Diss. ... dokt. fiz.-matem. nauk, In-t matem. c VTs UNTs RAN, Ufa, 1994

[19] J. Korevaar, M. Dixon, “Interpolation, strongly nonspanning powers and Macintyre exponents”, Nederl. Akad. Wetensch., 40, Indag. Math., 81:2 (1978), 243–258 | DOI | MR | Zbl

[20] M. A. Evgrafov, Asymptotic estimates and entire functions, Gordon and Breach, Inc., New York, 1961, x+181 pp. | MR | MR | Zbl | Zbl

[21] B. Berndtsson, “A note on Pavlov-Korevaar-Dixon interpolation”, Nederl. Akad. Wetensch., 40, Indag. Math., 81:4 (1978), 409–414 | DOI | MR | Zbl

[22] C. A. Berenstein, B. A. Taylor, “A new look at interpolation theory for entire functions of one variable”, Adv. in Math., 33:2 (1979), 109–143 | DOI | MR | Zbl

[23] K. G. Malyutin, “Interpolation problems of A. F. Leontiev type”, J. Math. Sci. (N.Y.), 252:3 (2021), 399–419 | DOI | MR | Zbl