@article{SM_2021_212_5_a1,
author = {A. R. Alimov and B. B. Bednov},
title = {Monotone path-connectedness of {Chebyshev} sets in three-dimensional spaces},
journal = {Sbornik. Mathematics},
pages = {636--654},
year = {2021},
volume = {212},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_5_a1/}
}
A. R. Alimov; B. B. Bednov. Monotone path-connectedness of Chebyshev sets in three-dimensional spaces. Sbornik. Mathematics, Tome 212 (2021) no. 5, pp. 636-654. http://geodesic.mathdoc.fr/item/SM_2021_212_5_a1/
[1] A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77 | DOI | DOI | MR | Zbl
[2] A. R. Alimov, E. V. Shchepin, “Convexity of suns in tangent directions”, J. Convex Anal., 26:4 (2019), 1071–1076 | MR | Zbl
[3] A. R. Alimov, E. V. Shchepin, “Convexity of Chebyshev sets with respect to tangent directions”, Russian Math. Surveys, 73:2 (2018), 366–368 | DOI | DOI | MR | Zbl
[4] A. R. Alimov, “Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces”, Izv. Math., 78:4 (2014), 641–655 | DOI | DOI | MR | Zbl
[5] A. R. Alimov, “Monotone path-connectedness of Chebyshev sets in the space $C(Q)$”, Sb. Math., 197:9 (2006), 1259–1272 | DOI | DOI | MR | Zbl
[6] A. R. Alimov, “Preservation of approximative properties of subsets of Chebyshev sets and suns in $\ell^\infty (n)$”, Izv. Math., 70:5 (2006), 857–866 | DOI | DOI | MR | Zbl
[7] A. R. Alimov, “Vypuklost i monotonnaya lineinaya svyaznost mnozhestv s nepreryvnoi metricheskoi proektsiei v trekhmernykh prostranstvakh”, Tr. IMM UrO RAN, 26, no. 2, 2020, 28–46 | DOI | MR
[8] A. R. Alimov, “Vypuklost ogranichennykh chebyshevskikh mnozhestv v konechnomernykh prostranstvakh s nesimmetrichnoi normoi”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:4(2) (2014), 489–497 | DOI | Zbl
[9] V. I. Berdyshev, “K voprosu o chebyshevskikh mnozhestvakh”, Dokl. AN AzSSR, 22:9 (1966), 3–5 | MR | Zbl
[10] A. Brøndsted, “Convex sets and Chebyshev sets. II”, Math. Scand., 18 (1966), 5–15 | DOI | MR | Zbl
[11] A. L. Brown, “Suns in normed linear spaces which are finite dimensional”, Math. Ann., 279:1 (1987), 87–101 | DOI | MR | Zbl
[12] A. L. Brown, “On the problem of characterising suns in finite dimensional spaces”, Proceedings of the fourth international conference on functional analysis and approximation theory (Potenza, 2000), v. I, Rend. Circ. Mat. Palermo (2) Suppl., 68, Part I, Circ. Mat. Palermo, Palermo, 2002, 315–328 | MR | Zbl
[13] R. R. Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Math., 1364, 2nd ed., Springer-Verlag, Berlin, 1993, xii+117 pp. | DOI | MR | Zbl
[14] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004, 416 pp. | Zbl
[15] I. G. Tsar'kov, “Continuous selections for metric projection operators and for their generalizations”, Izv. Math., 82:4 (2018), 837–859 | DOI | DOI | MR | Zbl
[16] I. G. Tsar'kov, “Weakly monotone sets and continuous selection in asymmetric spaces”, Sb. Math., 210:9 (2019), 1326–1347 | DOI | DOI | MR | Zbl
[17] I. G. Tsar'kov, “Approximative properties of sets and continuous selections”, Sb. Math., 211:8 (2020), 1190–1211 | DOI | DOI | MR | Zbl