Monotone path-connectedness of Chebyshev sets in three-dimensional spaces
Sbornik. Mathematics, Tome 212 (2021) no. 5, pp. 636-654

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize the three-dimensional Banach spaces in which any Chebyshev set is monotone path-connected. Namely, we show that in a three-dimensional space $X$ each Chebyshev set is monotone path-connected if and only if one of the following two conditions is satisfied: any exposed point of the unit sphere of $X$ is a smooth point or $X=Y\oplus_\infty \mathbb R$ (that is, the unit sphere of $X$ is a cylinder). Bibliography: 17 titles.
Keywords: Chebyshev set, sun, monotone path-connected set, cylindrical norm.
@article{SM_2021_212_5_a1,
     author = {A. R. Alimov and B. B. Bednov},
     title = {Monotone path-connectedness of {Chebyshev} sets in three-dimensional spaces},
     journal = {Sbornik. Mathematics},
     pages = {636--654},
     publisher = {mathdoc},
     volume = {212},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_5_a1/}
}
TY  - JOUR
AU  - A. R. Alimov
AU  - B. B. Bednov
TI  - Monotone path-connectedness of Chebyshev sets in three-dimensional spaces
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 636
EP  - 654
VL  - 212
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_5_a1/
LA  - en
ID  - SM_2021_212_5_a1
ER  - 
%0 Journal Article
%A A. R. Alimov
%A B. B. Bednov
%T Monotone path-connectedness of Chebyshev sets in three-dimensional spaces
%J Sbornik. Mathematics
%D 2021
%P 636-654
%V 212
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_5_a1/
%G en
%F SM_2021_212_5_a1
A. R. Alimov; B. B. Bednov. Monotone path-connectedness of Chebyshev sets in three-dimensional spaces. Sbornik. Mathematics, Tome 212 (2021) no. 5, pp. 636-654. http://geodesic.mathdoc.fr/item/SM_2021_212_5_a1/