Monotone path-connectedness of Chebyshev sets in three-dimensional spaces
Sbornik. Mathematics, Tome 212 (2021) no. 5, pp. 636-654 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We characterize the three-dimensional Banach spaces in which any Chebyshev set is monotone path-connected. Namely, we show that in a three-dimensional space $X$ each Chebyshev set is monotone path-connected if and only if one of the following two conditions is satisfied: any exposed point of the unit sphere of $X$ is a smooth point or $X=Y\oplus_\infty \mathbb R$ (that is, the unit sphere of $X$ is a cylinder). Bibliography: 17 titles.
Keywords: Chebyshev set, sun, monotone path-connected set, cylindrical norm.
@article{SM_2021_212_5_a1,
     author = {A. R. Alimov and B. B. Bednov},
     title = {Monotone path-connectedness of {Chebyshev} sets in three-dimensional spaces},
     journal = {Sbornik. Mathematics},
     pages = {636--654},
     year = {2021},
     volume = {212},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_5_a1/}
}
TY  - JOUR
AU  - A. R. Alimov
AU  - B. B. Bednov
TI  - Monotone path-connectedness of Chebyshev sets in three-dimensional spaces
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 636
EP  - 654
VL  - 212
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_5_a1/
LA  - en
ID  - SM_2021_212_5_a1
ER  - 
%0 Journal Article
%A A. R. Alimov
%A B. B. Bednov
%T Monotone path-connectedness of Chebyshev sets in three-dimensional spaces
%J Sbornik. Mathematics
%D 2021
%P 636-654
%V 212
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2021_212_5_a1/
%G en
%F SM_2021_212_5_a1
A. R. Alimov; B. B. Bednov. Monotone path-connectedness of Chebyshev sets in three-dimensional spaces. Sbornik. Mathematics, Tome 212 (2021) no. 5, pp. 636-654. http://geodesic.mathdoc.fr/item/SM_2021_212_5_a1/

[1] A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77 | DOI | DOI | MR | Zbl

[2] A. R. Alimov, E. V. Shchepin, “Convexity of suns in tangent directions”, J. Convex Anal., 26:4 (2019), 1071–1076 | MR | Zbl

[3] A. R. Alimov, E. V. Shchepin, “Convexity of Chebyshev sets with respect to tangent directions”, Russian Math. Surveys, 73:2 (2018), 366–368 | DOI | DOI | MR | Zbl

[4] A. R. Alimov, “Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces”, Izv. Math., 78:4 (2014), 641–655 | DOI | DOI | MR | Zbl

[5] A. R. Alimov, “Monotone path-connectedness of Chebyshev sets in the space $C(Q)$”, Sb. Math., 197:9 (2006), 1259–1272 | DOI | DOI | MR | Zbl

[6] A. R. Alimov, “Preservation of approximative properties of subsets of Chebyshev sets and suns in $\ell^\infty (n)$”, Izv. Math., 70:5 (2006), 857–866 | DOI | DOI | MR | Zbl

[7] A. R. Alimov, “Vypuklost i monotonnaya lineinaya svyaznost mnozhestv s nepreryvnoi metricheskoi proektsiei v trekhmernykh prostranstvakh”, Tr. IMM UrO RAN, 26, no. 2, 2020, 28–46 | DOI | MR

[8] A. R. Alimov, “Vypuklost ogranichennykh chebyshevskikh mnozhestv v konechnomernykh prostranstvakh s nesimmetrichnoi normoi”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:4(2) (2014), 489–497 | DOI | Zbl

[9] V. I. Berdyshev, “K voprosu o chebyshevskikh mnozhestvakh”, Dokl. AN AzSSR, 22:9 (1966), 3–5 | MR | Zbl

[10] A. Brøndsted, “Convex sets and Chebyshev sets. II”, Math. Scand., 18 (1966), 5–15 | DOI | MR | Zbl

[11] A. L. Brown, “Suns in normed linear spaces which are finite dimensional”, Math. Ann., 279:1 (1987), 87–101 | DOI | MR | Zbl

[12] A. L. Brown, “On the problem of characterising suns in finite dimensional spaces”, Proceedings of the fourth international conference on functional analysis and approximation theory (Potenza, 2000), v. I, Rend. Circ. Mat. Palermo (2) Suppl., 68, Part I, Circ. Mat. Palermo, Palermo, 2002, 315–328 | MR | Zbl

[13] R. R. Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Math., 1364, 2nd ed., Springer-Verlag, Berlin, 1993, xii+117 pp. | DOI | MR | Zbl

[14] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004, 416 pp. | Zbl

[15] I. G. Tsar'kov, “Continuous selections for metric projection operators and for their generalizations”, Izv. Math., 82:4 (2018), 837–859 | DOI | DOI | MR | Zbl

[16] I. G. Tsar'kov, “Weakly monotone sets and continuous selection in asymmetric spaces”, Sb. Math., 210:9 (2019), 1326–1347 | DOI | DOI | MR | Zbl

[17] I. G. Tsar'kov, “Approximative properties of sets and continuous selections”, Sb. Math., 211:8 (2020), 1190–1211 | DOI | DOI | MR | Zbl