Manifolds of isospectral arrow matrices
Sbornik. Mathematics, Tome 212 (2021) no. 5, pp. 605-635

Voir la notice de l'article provenant de la source Math-Net.Ru

An arrow matrix is a matrix with zeros outside the main diagonal, the first row and the first column. We consider the space $M_{\operatorname{St}_n,\lambda}$ of Hermitian arrow $(n+1)\times (n+1)$-matrices with fixed simple spectrum $\lambda$. We prove that this space is a smooth $2n$-manifold with a locally standard torus action: we describe the topology and combinatorics of its orbit space. If $n\geqslant 3$, the orbit space $M_{\operatorname{St}_n,\lambda}/T^n$ is not a polytope, hence $M_{\operatorname{St}_n,\lambda}$ is not a quasitoric manifold. However, there is an action of a semidirect product $T^n\rtimes\Sigma_n$ on $M_{\operatorname{St}_n,\lambda}$, and the orbit space of this action is a certain simple polytope $\mathscr{B}^n$ obtained from the cube by cutting off codimension-2 faces. In the case $n=3$, the space $M_{\operatorname{St}_3,\lambda}/T^3$ is a solid torus with boundary subdivided into hexagons in a regular way. This description allows us to compute the cohomology ring and equivariant cohomology ring of the 6-dimensional manifold $M_{\operatorname{St}_3,\lambda}$ and another manifold, its twin. Bibliography: 32 titles.
Keywords: fundamental domain, codimension-2 face cuts.
Mots-clés : sparse matrix, group action, moment map
@article{SM_2021_212_5_a0,
     author = {A. A. Ayzenberg and V. M. Buchstaber},
     title = {Manifolds of isospectral arrow matrices},
     journal = {Sbornik. Mathematics},
     pages = {605--635},
     publisher = {mathdoc},
     volume = {212},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_5_a0/}
}
TY  - JOUR
AU  - A. A. Ayzenberg
AU  - V. M. Buchstaber
TI  - Manifolds of isospectral arrow matrices
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 605
EP  - 635
VL  - 212
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_5_a0/
LA  - en
ID  - SM_2021_212_5_a0
ER  - 
%0 Journal Article
%A A. A. Ayzenberg
%A V. M. Buchstaber
%T Manifolds of isospectral arrow matrices
%J Sbornik. Mathematics
%D 2021
%P 605-635
%V 212
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_5_a0/
%G en
%F SM_2021_212_5_a0
A. A. Ayzenberg; V. M. Buchstaber. Manifolds of isospectral arrow matrices. Sbornik. Mathematics, Tome 212 (2021) no. 5, pp. 605-635. http://geodesic.mathdoc.fr/item/SM_2021_212_5_a0/