Hua Loo-Keng's problem for primes of a~special form
Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 592-603
Voir la notice de l'article provenant de la source Math-Net.Ru
Hua Loo-Keng's problem is solved for primes, four of which have binary expansions of a special form, whilst the fifth satisfies the inequality $\{(1/2)p^{1/c}\}1/2$, where $c\in (1,2]$.
Bibliography: 13 titles.
Keywords:
Hua Loo-Keng's problem, circle method, trigonometric sums, nonlinear additive problem for primes.
@article{SM_2021_212_4_a7,
author = {K. M. Eminyan},
title = {Hua {Loo-Keng's} problem for primes of a~special form},
journal = {Sbornik. Mathematics},
pages = {592--603},
publisher = {mathdoc},
volume = {212},
number = {4},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_4_a7/}
}
K. M. Eminyan. Hua Loo-Keng's problem for primes of a~special form. Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 592-603. http://geodesic.mathdoc.fr/item/SM_2021_212_4_a7/