Hua Loo-Keng's problem for primes of a~special form
Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 592-603

Voir la notice de l'article provenant de la source Math-Net.Ru

Hua Loo-Keng's problem is solved for primes, four of which have binary expansions of a special form, whilst the fifth satisfies the inequality $\{(1/2)p^{1/c}\}1/2$, where $c\in (1,2]$. Bibliography: 13 titles.
Keywords: Hua Loo-Keng's problem, circle method, trigonometric sums, nonlinear additive problem for primes.
@article{SM_2021_212_4_a7,
     author = {K. M. Eminyan},
     title = {Hua {Loo-Keng's} problem for primes of a~special form},
     journal = {Sbornik. Mathematics},
     pages = {592--603},
     publisher = {mathdoc},
     volume = {212},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_4_a7/}
}
TY  - JOUR
AU  - K. M. Eminyan
TI  - Hua Loo-Keng's problem for primes of a~special form
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 592
EP  - 603
VL  - 212
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_4_a7/
LA  - en
ID  - SM_2021_212_4_a7
ER  - 
%0 Journal Article
%A K. M. Eminyan
%T Hua Loo-Keng's problem for primes of a~special form
%J Sbornik. Mathematics
%D 2021
%P 592-603
%V 212
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_4_a7/
%G en
%F SM_2021_212_4_a7
K. M. Eminyan. Hua Loo-Keng's problem for primes of a~special form. Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 592-603. http://geodesic.mathdoc.fr/item/SM_2021_212_4_a7/