Hua Loo-Keng's problem for primes of a special form
Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 592-603 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Hua Loo-Keng's problem is solved for primes, four of which have binary expansions of a special form, whilst the fifth satisfies the inequality $\{(1/2)p^{1/c}\}<1/2$, where $c\in (1,2]$. Bibliography: 13 titles.
Keywords: Hua Loo-Keng's problem, circle method, trigonometric sums, nonlinear additive problem for primes.
@article{SM_2021_212_4_a7,
     author = {K. M. Eminyan},
     title = {Hua {Loo-Keng's} problem for primes of a~special form},
     journal = {Sbornik. Mathematics},
     pages = {592--603},
     year = {2021},
     volume = {212},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_4_a7/}
}
TY  - JOUR
AU  - K. M. Eminyan
TI  - Hua Loo-Keng's problem for primes of a special form
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 592
EP  - 603
VL  - 212
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_4_a7/
LA  - en
ID  - SM_2021_212_4_a7
ER  - 
%0 Journal Article
%A K. M. Eminyan
%T Hua Loo-Keng's problem for primes of a special form
%J Sbornik. Mathematics
%D 2021
%P 592-603
%V 212
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2021_212_4_a7/
%G en
%F SM_2021_212_4_a7
K. M. Eminyan. Hua Loo-Keng's problem for primes of a special form. Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 592-603. http://geodesic.mathdoc.fr/item/SM_2021_212_4_a7/

[1] A. O. Gelfond, “Sur les nombres qui ont des propriétés additives et multiplicatives données”, Acta Arith., 13 (1968), 259–265 | DOI | MR | Zbl

[2] K. M. Èminyan, “On the Dirichlet divisor problem in some sequences of natural numbers”, Math. USSR-Izv., 38:3 (1992), 669–675 | DOI | MR | Zbl

[3] C. Mauduit, J. Rivat, “Sur un problème de Gelfond: la somme des chiffres des nombres premiers”, Ann. of Math. (2), 171:3 (2010), 1591–1646 | DOI | MR | Zbl

[4] K. M. Eminyan, “The Goldbach problem with primes having binary expansions of a special form”, Izv. Math., 78:1 (2014), 201–211 | DOI | DOI | MR | Zbl

[5] K. M. Éminyan, “A nonlinear additive problem with prime numbers of a special form”, Math. Notes, 105:3 (2019), 458–463 | DOI | DOI | MR | Zbl

[6] Loo-keng Hua, “On the representation of numbers as the sum of powers of primes”, Math. Z., 44:1 (1939), 335–346 | DOI | MR | Zbl

[7] I. M. Vinogradov, “Nekotoroe obschee svoistvo raspredeleniya prostykh chisel”, Matem. sb., 7(49):2 (1940), 365–372 | MR | Zbl

[8] Yu. V. Linnik, “Ob odnoi teoreme teorii prostykh chisel”, Dokl. AN SSSR, 47:1 (1945), 7–9 | MR | Zbl

[9] S. A. Gritsenko, “Three additive problems”, Russian Acad. Sci. Izv. Math., 41:3 (1993), 447–464 | DOI | MR | Zbl

[10] M. E. Changa, “Primes in special intervals and additive problems with such numbers”, Math. Notes, 73:3 (2003), 389–401 | DOI | DOI | MR | Zbl

[11] Loo-keng Hua, Additive Primzahltheorie, B. G. Teubner Verlagsgesellschaft, Leipzig, 1959, vi+174 pp. | MR | MR | Zbl | Zbl

[12] A. A. Karatsuba, Basic analytic number theory, Springer-Verlag, Berlin, 1993, xiv+222 pp. | DOI | MR | MR | Zbl

[13] I. M. Vinogradov, The method of trigonometrical sums in the theory of numbers, Interscience Publishers Inc., London–New York, 1954, x+180 pp. | MR | MR | Zbl | Zbl