On continuous endomorphisms of entire functions
Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 567-591 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with continuous linear operators on the space of entire functions. The properties of such operators that are related to the definition of convolution-type operators in spaces of analytic functions are investigated. Corollaries refining both the approximation theorem for the kernel of a symmetric convolution operator and the dual definition of a differential operator in a complex domain are stated. Bibliography: 20 titles.
Keywords: symmetric shift operator, symmetric convolution operator, exponential synthesis.
@article{SM_2021_212_4_a6,
     author = {A. B. Shishkin},
     title = {On continuous endomorphisms of entire functions},
     journal = {Sbornik. Mathematics},
     pages = {567--591},
     year = {2021},
     volume = {212},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_4_a6/}
}
TY  - JOUR
AU  - A. B. Shishkin
TI  - On continuous endomorphisms of entire functions
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 567
EP  - 591
VL  - 212
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_4_a6/
LA  - en
ID  - SM_2021_212_4_a6
ER  - 
%0 Journal Article
%A A. B. Shishkin
%T On continuous endomorphisms of entire functions
%J Sbornik. Mathematics
%D 2021
%P 567-591
%V 212
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2021_212_4_a6/
%G en
%F SM_2021_212_4_a6
A. B. Shishkin. On continuous endomorphisms of entire functions. Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 567-591. http://geodesic.mathdoc.fr/item/SM_2021_212_4_a6/

[1] A. B. Shishkin, “Proektivnoe i in'ektivnoe opisaniya v kompleksnoi oblasti. Dvoistvennost”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:1 (2014), 47–65 | DOI | Zbl

[2] A. B. Shishkin, “Faktorizatsiya tselykh simmetrichnykh funktsii eksponentsialnogo tipa”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:1 (2016), 42–68 | DOI | MR | Zbl

[3] A. B. Shishkin, “Exponential synthesis in the kernel of a symmetric convolution”, J. Math. Sci. (N.Y.), 229:5 (2018), 572–599 | DOI | MR | Zbl

[4] G. Köthe, “Dualität in der Funktionentheorie”, J. Reine Angew. Math., 1953:191 (1953), 30–49 | DOI | MR | Zbl

[5] J. Sebastião e Silva, “Su certe classi di spazi localmente convessi importanti per le applicazioni”, Rend. Mat. e Appl. (5), 14 (1955), 388–410 | MR | Zbl

[6] L. Ehrenpreis, “Mean periodic functions. I. Varieties whose annihilator ideals are principal”, Amer. J. Math., 77:2 (1955), 293–328 | DOI | MR | Zbl

[7] I. F. Krasičkov, “Closed ideals in locally convex algebras of entire functions. II”, Math. USSR-Izv., 2:5 (1968), 979–986 | DOI | MR | Zbl

[8] I. F. Krasichkov, “Closed ideals in locally convex algebras of entire functions. Algebras of minimal type”, Siberian Math. J., 9:1 (1968), 59–71 | DOI | MR | Zbl

[9] L. Ehrenpreis, Fourier analysis in several complex variables, Pure Appl. Math., 17, Wiley-Intersci. Publ. John Wiley Sons, New York–London–Sydney, 1970, xiii+506 pp. | MR | Zbl

[10] I. F. Krasičkov-Ternovskiĭ, “Invariant subspaces of analytic functions. II. Spectral synthesis of convex domains”, Math. USSR-Sb., 17:1 (1972), 1–29 | DOI | MR | Zbl

[11] A. B. Shishkin, “Spectral synthesis for an operator generated by multiplication by a power of the independent variable”, Math. USSR-Sb., 73:1 (1992), 211–229 | DOI | MR | Zbl

[12] I. F. Krasichkov-Ternovskiĭ, “Spectral synthesis in a complex domain for a differential operator with constant coefficients. IV. Synthesis”, Russian Acad. Sci. Sb. Math., 76:2 (1993), 407–426 | DOI | MR | Zbl

[13] I. F. Krasichkov-Ternovskii, “Approximation theorem for a homogeneous vector convolution equation”, Sb. Math., 195:9 (2004), 1271–1289 | DOI | DOI | MR | Zbl

[14] A. B. Shishkin, “Spectral synthesis for systems of differential operators with constant coefficients. Duality theorem”, Sb. Math., 189:9 (1998), 1423–1440 | DOI | DOI | MR | Zbl

[15] A. B. Shishkin, “Obilnost glavnykh ${\mathbb C}[\pi]$-podmodulei”, Izv. vuzov. Sev.-kavkaz. reg. Estestv. nauki, 2009, no. 3, 34–38 | Zbl

[16] N. Sibony, “Approximation polinomiale pondérée dans un domaine d'holomorphie de $\mathbf{C}^{n}$”, Ann. Inst. Fourier (Grenoble), 26:2 (1976), 71–99 | DOI | MR | Zbl

[17] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York–Toronto–London, 1965, xiii+781 pp. | MR | Zbl | Zbl

[18] I. F. Krasičkov-Ternovskii, “Invariant subspaces of analytic functions. I. Spectral analysis on convex regions”, Math. USSR-Sb., 16:4 (1972), 471–500 | DOI | MR | Zbl

[19] A. P. Robertson, W. J. Robertson, Topological vector spaces, Cambridge Tracts in Math. and Math. Phys., 53, Cambridge Univ. Press, New York, 1964, viii+158 pp. | MR | MR | Zbl | Zbl

[20] A. B. Shishkin, “Spectral synthesis for systems of differential operators with constant coefficients”, Sb. Math., 194:12 (2003), 1865–1898 | DOI | DOI | MR | Zbl