@article{SM_2021_212_4_a6,
author = {A. B. Shishkin},
title = {On continuous endomorphisms of entire functions},
journal = {Sbornik. Mathematics},
pages = {567--591},
year = {2021},
volume = {212},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_4_a6/}
}
A. B. Shishkin. On continuous endomorphisms of entire functions. Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 567-591. http://geodesic.mathdoc.fr/item/SM_2021_212_4_a6/
[1] A. B. Shishkin, “Proektivnoe i in'ektivnoe opisaniya v kompleksnoi oblasti. Dvoistvennost”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:1 (2014), 47–65 | DOI | Zbl
[2] A. B. Shishkin, “Faktorizatsiya tselykh simmetrichnykh funktsii eksponentsialnogo tipa”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:1 (2016), 42–68 | DOI | MR | Zbl
[3] A. B. Shishkin, “Exponential synthesis in the kernel of a symmetric convolution”, J. Math. Sci. (N.Y.), 229:5 (2018), 572–599 | DOI | MR | Zbl
[4] G. Köthe, “Dualität in der Funktionentheorie”, J. Reine Angew. Math., 1953:191 (1953), 30–49 | DOI | MR | Zbl
[5] J. Sebastião e Silva, “Su certe classi di spazi localmente convessi importanti per le applicazioni”, Rend. Mat. e Appl. (5), 14 (1955), 388–410 | MR | Zbl
[6] L. Ehrenpreis, “Mean periodic functions. I. Varieties whose annihilator ideals are principal”, Amer. J. Math., 77:2 (1955), 293–328 | DOI | MR | Zbl
[7] I. F. Krasičkov, “Closed ideals in locally convex algebras of entire functions. II”, Math. USSR-Izv., 2:5 (1968), 979–986 | DOI | MR | Zbl
[8] I. F. Krasichkov, “Closed ideals in locally convex algebras of entire functions. Algebras of minimal type”, Siberian Math. J., 9:1 (1968), 59–71 | DOI | MR | Zbl
[9] L. Ehrenpreis, Fourier analysis in several complex variables, Pure Appl. Math., 17, Wiley-Intersci. Publ. John Wiley Sons, New York–London–Sydney, 1970, xiii+506 pp. | MR | Zbl
[10] I. F. Krasičkov-Ternovskiĭ, “Invariant subspaces of analytic functions. II. Spectral synthesis of convex domains”, Math. USSR-Sb., 17:1 (1972), 1–29 | DOI | MR | Zbl
[11] A. B. Shishkin, “Spectral synthesis for an operator generated by multiplication by a power of the independent variable”, Math. USSR-Sb., 73:1 (1992), 211–229 | DOI | MR | Zbl
[12] I. F. Krasichkov-Ternovskiĭ, “Spectral synthesis in a complex domain for a differential operator with constant coefficients. IV. Synthesis”, Russian Acad. Sci. Sb. Math., 76:2 (1993), 407–426 | DOI | MR | Zbl
[13] I. F. Krasichkov-Ternovskii, “Approximation theorem for a homogeneous vector convolution equation”, Sb. Math., 195:9 (2004), 1271–1289 | DOI | DOI | MR | Zbl
[14] A. B. Shishkin, “Spectral synthesis for systems of differential operators with constant coefficients. Duality theorem”, Sb. Math., 189:9 (1998), 1423–1440 | DOI | DOI | MR | Zbl
[15] A. B. Shishkin, “Obilnost glavnykh ${\mathbb C}[\pi]$-podmodulei”, Izv. vuzov. Sev.-kavkaz. reg. Estestv. nauki, 2009, no. 3, 34–38 | Zbl
[16] N. Sibony, “Approximation polinomiale pondérée dans un domaine d'holomorphie de $\mathbf{C}^{n}$”, Ann. Inst. Fourier (Grenoble), 26:2 (1976), 71–99 | DOI | MR | Zbl
[17] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York–Toronto–London, 1965, xiii+781 pp. | MR | Zbl | Zbl
[18] I. F. Krasičkov-Ternovskii, “Invariant subspaces of analytic functions. I. Spectral analysis on convex regions”, Math. USSR-Sb., 16:4 (1972), 471–500 | DOI | MR | Zbl
[19] A. P. Robertson, W. J. Robertson, Topological vector spaces, Cambridge Tracts in Math. and Math. Phys., 53, Cambridge Univ. Press, New York, 1964, viii+158 pp. | MR | MR | Zbl | Zbl
[20] A. B. Shishkin, “Spectral synthesis for systems of differential operators with constant coefficients”, Sb. Math., 194:12 (2003), 1865–1898 | DOI | DOI | MR | Zbl