Birational geometry of singular Fano double spaces of index two
Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 551-566
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the birational geometry of Fano double spaces $V\stackrel{\sigma}{\to}{\mathbb P}^{M+1}$ of index 2 and dimension ${\geqslant 8}$ with at most quadratic singularities of rank ${\geqslant 8}$, satisfying certain additional conditions of general position: we prove that these varieties have no structures of a rationally connected fibre space over a base of dimension ${\geqslant2}$, that every birational map $\chi\colon V\dashrightarrow V'$ onto the total space of a Mori fibre space $V'/{\mathbb P}^1$ induces an isomorphism $V^+\cong V'$ of the blow-up $V^+$ of $V$ along $\sigma^{-1}(P)$, where $P\subset {\mathbb P}^{M+1}$ is a linear subspace of codimension 2, and that every birational map of $V$ onto a Fano variety $V'$ with ${\mathbb Q}$-factorial terminal singularities and Picard number 1 is an isomorphism. We give an explicit lower estimate, quadratic in $M$, for the codimension of the set of varieties $V$ that have worse singularities or do not satisfy the conditions of general position. The proof makes use of the method of maximal singularities and the improved $4n^2$-inequality for the self-intersection of a mobile linear system.
Bibliography: 20 titles.
Keywords:
Fano variety, linear system, maximal singularity.
Mots-clés : Mori fibre space, birational map
Mots-clés : Mori fibre space, birational map
@article{SM_2021_212_4_a5,
author = {A. V. Pukhlikov},
title = {Birational geometry of singular {Fano} double spaces of index two},
journal = {Sbornik. Mathematics},
pages = {551--566},
publisher = {mathdoc},
volume = {212},
number = {4},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_4_a5/}
}
A. V. Pukhlikov. Birational geometry of singular Fano double spaces of index two. Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 551-566. http://geodesic.mathdoc.fr/item/SM_2021_212_4_a5/