Birational geometry of singular Fano double spaces of index two
Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 551-566 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe the birational geometry of Fano double spaces $V\stackrel{\sigma}{\to}{\mathbb P}^{M+1}$ of index 2 and dimension ${\geqslant 8}$ with at most quadratic singularities of rank ${\geqslant 8}$, satisfying certain additional conditions of general position: we prove that these varieties have no structures of a rationally connected fibre space over a base of dimension ${\geqslant2}$, that every birational map $\chi\colon V\dashrightarrow V'$ onto the total space of a Mori fibre space $V'/{\mathbb P}^1$ induces an isomorphism $V^+\cong V'$ of the blow-up $V^+$ of $V$ along $\sigma^{-1}(P)$, where $P\subset {\mathbb P}^{M+1}$ is a linear subspace of codimension 2, and that every birational map of $V$ onto a Fano variety $V'$ with ${\mathbb Q}$-factorial terminal singularities and Picard number 1 is an isomorphism. We give an explicit lower estimate, quadratic in $M$, for the codimension of the set of varieties $V$ that have worse singularities or do not satisfy the conditions of general position. The proof makes use of the method of maximal singularities and the improved $4n^2$-inequality for the self-intersection of a mobile linear system. Bibliography: 20 titles.
Keywords: Fano variety, linear system, maximal singularity.
Mots-clés : Mori fibre space, birational map
@article{SM_2021_212_4_a5,
     author = {A. V. Pukhlikov},
     title = {Birational geometry of singular {Fano} double spaces of index two},
     journal = {Sbornik. Mathematics},
     pages = {551--566},
     year = {2021},
     volume = {212},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_4_a5/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birational geometry of singular Fano double spaces of index two
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 551
EP  - 566
VL  - 212
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_4_a5/
LA  - en
ID  - SM_2021_212_4_a5
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birational geometry of singular Fano double spaces of index two
%J Sbornik. Mathematics
%D 2021
%P 551-566
%V 212
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2021_212_4_a5/
%G en
%F SM_2021_212_4_a5
A. V. Pukhlikov. Birational geometry of singular Fano double spaces of index two. Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 551-566. http://geodesic.mathdoc.fr/item/SM_2021_212_4_a5/

[1] A. V. Pukhlikov, “Birational geometry of Fano double spaces of index two”, Izv. Math., 74:5 (2010), 925–991 | DOI | DOI | MR | Zbl

[2] F. Call, G. Lyubeznik, “A simple proof of Grothendieck's theorem on the parafactoriality of local rings”, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994, 15–18 | DOI | MR | Zbl

[3] A. V. Pukhlikov, “Birationally rigid Fano fibre spaces. II”, Izv. Math., 79:4 (2015), 809–837 | DOI | DOI | MR | Zbl

[4] A. Pukhlikov, Birationally rigid varieties, Math. Surveys Monogr., 190, Amer. Math. Soc., Providence, RI, 2013, vi+365 pp. | DOI | MR | Zbl

[5] A. V. Pukhlikov, “Birational geometry of Fano direct products”, Izv. Math., 69:6 (2005), 1225–1255 | DOI | DOI | MR | Zbl

[6] A. V. Pukhlikov, “Birational geometry of singular Fano hypersurfaces of index two”, Manuscripta Math., 161:1-2 (2020), 161–203 | DOI | MR | Zbl

[7] A. V. Pukhlikov, “The $4n^2$-inequality for complete intersection singularities”, Arnold Math. J., 3:2 (2017), 187–196 | DOI | MR | Zbl

[8] A. V. Pukhlikov, “Birational geometry of Fano hypersurfaces of index two”, Math. Ann., 366:1 (2016), 721–782 | DOI | MR | Zbl

[9] F. Suzuki, “Birational rigidity of complete intersections”, Math. Z., 285:1-2 (2017), 479–492 | DOI | MR | Zbl

[10] A. V. Pukhlikov, “Birationally rigid Fano hypersurfaces”, Izv. Math., 66:6 (2002), 1243–1269 | DOI | DOI | MR | Zbl

[11] I. Krylov, “Birational geometry of del Pezzo fibrations with terminal quotient singularities”, J. Lond. Math. Soc. (2), 97 (2018), 222–246 | DOI | MR | Zbl

[12] H. Ahmadinezhad, “Singular del Pezzo fibrations and birational rigidity”, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 3–15 | DOI | MR | Zbl

[13] I. Cheltsov, J. Park, “Sextic double solids”, Cohomological and geometric approaches to rationality problems, Progr. Math., 282, Birkhäuser Boston, Boston, MA, 2010, 75–132 | DOI | MR | Zbl

[14] D. Foord, “Birationally rigid Fano cyclic covers over a hypersurface containing a singular point”, Eur. J. Math., Publ. online: 2020, 1–16 | DOI

[15] A. V. Pukhlikov, “Birationally rigid complete intersections with a singular point of high multiplicity”, Proc. Edinb. Math. Soc. (2), 62:1 (2019), 221–239 | DOI | MR | Zbl

[16] V. A. Iskovskih, Yu. I. Manin, “Three-dimensional quartics and counterexamples to the Lüroth problem”, Math. USSR-Sb., 15:1 (1971), 141–166 | DOI | MR | Zbl

[17] V. A. Iskovskikh, “Birational automorphisms of three-dimensional algebraic varieties”, J. Soviet Math., 13:6 (1980), 815–868 | DOI | MR | Zbl

[18] A. V. Pukhlikov, “Birational automorphisms of a double space and double quadric”, Math. USSR Izv., 32:1 (1989), 233–243 | DOI | MR | Zbl

[19] Th. Eckl, A. Pukhlikov, “On the locus of nonrigid hypersurfaces”, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 121–139 | DOI | MR | Zbl

[20] Th. Eckl, A. Pukhlikov, “Effective birational rigidity of Fano double hypersurfaces”, Arnold Math. J., 4:3-4 (2018), 505–521 | DOI | MR | Zbl