Mots-clés : Mori fibre space, birational map
@article{SM_2021_212_4_a5,
author = {A. V. Pukhlikov},
title = {Birational geometry of singular {Fano} double spaces of index two},
journal = {Sbornik. Mathematics},
pages = {551--566},
year = {2021},
volume = {212},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_4_a5/}
}
A. V. Pukhlikov. Birational geometry of singular Fano double spaces of index two. Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 551-566. http://geodesic.mathdoc.fr/item/SM_2021_212_4_a5/
[1] A. V. Pukhlikov, “Birational geometry of Fano double spaces of index two”, Izv. Math., 74:5 (2010), 925–991 | DOI | DOI | MR | Zbl
[2] F. Call, G. Lyubeznik, “A simple proof of Grothendieck's theorem on the parafactoriality of local rings”, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994, 15–18 | DOI | MR | Zbl
[3] A. V. Pukhlikov, “Birationally rigid Fano fibre spaces. II”, Izv. Math., 79:4 (2015), 809–837 | DOI | DOI | MR | Zbl
[4] A. Pukhlikov, Birationally rigid varieties, Math. Surveys Monogr., 190, Amer. Math. Soc., Providence, RI, 2013, vi+365 pp. | DOI | MR | Zbl
[5] A. V. Pukhlikov, “Birational geometry of Fano direct products”, Izv. Math., 69:6 (2005), 1225–1255 | DOI | DOI | MR | Zbl
[6] A. V. Pukhlikov, “Birational geometry of singular Fano hypersurfaces of index two”, Manuscripta Math., 161:1-2 (2020), 161–203 | DOI | MR | Zbl
[7] A. V. Pukhlikov, “The $4n^2$-inequality for complete intersection singularities”, Arnold Math. J., 3:2 (2017), 187–196 | DOI | MR | Zbl
[8] A. V. Pukhlikov, “Birational geometry of Fano hypersurfaces of index two”, Math. Ann., 366:1 (2016), 721–782 | DOI | MR | Zbl
[9] F. Suzuki, “Birational rigidity of complete intersections”, Math. Z., 285:1-2 (2017), 479–492 | DOI | MR | Zbl
[10] A. V. Pukhlikov, “Birationally rigid Fano hypersurfaces”, Izv. Math., 66:6 (2002), 1243–1269 | DOI | DOI | MR | Zbl
[11] I. Krylov, “Birational geometry of del Pezzo fibrations with terminal quotient singularities”, J. Lond. Math. Soc. (2), 97 (2018), 222–246 | DOI | MR | Zbl
[12] H. Ahmadinezhad, “Singular del Pezzo fibrations and birational rigidity”, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 3–15 | DOI | MR | Zbl
[13] I. Cheltsov, J. Park, “Sextic double solids”, Cohomological and geometric approaches to rationality problems, Progr. Math., 282, Birkhäuser Boston, Boston, MA, 2010, 75–132 | DOI | MR | Zbl
[14] D. Foord, “Birationally rigid Fano cyclic covers over a hypersurface containing a singular point”, Eur. J. Math., Publ. online: 2020, 1–16 | DOI
[15] A. V. Pukhlikov, “Birationally rigid complete intersections with a singular point of high multiplicity”, Proc. Edinb. Math. Soc. (2), 62:1 (2019), 221–239 | DOI | MR | Zbl
[16] V. A. Iskovskih, Yu. I. Manin, “Three-dimensional quartics and counterexamples to the Lüroth problem”, Math. USSR-Sb., 15:1 (1971), 141–166 | DOI | MR | Zbl
[17] V. A. Iskovskikh, “Birational automorphisms of three-dimensional algebraic varieties”, J. Soviet Math., 13:6 (1980), 815–868 | DOI | MR | Zbl
[18] A. V. Pukhlikov, “Birational automorphisms of a double space and double quadric”, Math. USSR Izv., 32:1 (1989), 233–243 | DOI | MR | Zbl
[19] Th. Eckl, A. Pukhlikov, “On the locus of nonrigid hypersurfaces”, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 121–139 | DOI | MR | Zbl
[20] Th. Eckl, A. Pukhlikov, “Effective birational rigidity of Fano double hypersurfaces”, Arnold Math. J., 4:3-4 (2018), 505–521 | DOI | MR | Zbl