Homological dimensions of Banach spaces
Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 531-550
Voir la notice de l'article provenant de la source Math-Net.Ru
The purpose of this paper is to lay the foundations for the study of the problem of when $\operatorname{Ext}^n(X, Y)=0$ in Banach spaces. We provide a number of examples of couples $X$, $Y$ such that $\operatorname{Ext}^n(X,Y)$ is (or is not) $0$. We show that $\operatorname{Ext}^n(\mathcal K, \mathcal K)\neq 0$ for all $n\in \mathbb{N}$ when $\mathcal K$ is the Kadec space. In
particular, both the projective and injective dimensions of $\mathcal K$ are infinite.
Bibliography: 48 titles.
Keywords:
exact sequence, homology, $\operatorname{Ext}^n$ functor, Banach space
Mots-clés : quasi-Banach space, homological dimension.
Mots-clés : quasi-Banach space, homological dimension.
@article{SM_2021_212_4_a4,
author = {F. Cabello S\'anchez and J. M. F. Castillo and R. Garc{\'\i}a},
title = {Homological dimensions of {Banach} spaces},
journal = {Sbornik. Mathematics},
pages = {531--550},
publisher = {mathdoc},
volume = {212},
number = {4},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_4_a4/}
}
F. Cabello Sánchez; J. M. F. Castillo; R. García. Homological dimensions of Banach spaces. Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 531-550. http://geodesic.mathdoc.fr/item/SM_2021_212_4_a4/