Homological dimensions of Banach spaces
Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 531-550 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The purpose of this paper is to lay the foundations for the study of the problem of when $\operatorname{Ext}^n(X, Y)=0$ in Banach spaces. We provide a number of examples of couples $X$, $Y$ such that $\operatorname{Ext}^n(X,Y)$ is (or is not) $0$. We show that $\operatorname{Ext}^n(\mathcal K, \mathcal K)\neq 0$ for all $n\in \mathbb{N}$ when $\mathcal K$ is the Kadec space. In particular, both the projective and injective dimensions of $\mathcal K$ are infinite. Bibliography: 48 titles.
Keywords: exact sequence, homology, $\operatorname{Ext}^n$ functor, Banach space
Mots-clés : quasi-Banach space, homological dimension.
@article{SM_2021_212_4_a4,
     author = {F. Cabello S\'anchez and J. M. F. Castillo and R. Garc{\'\i}a},
     title = {Homological dimensions of {Banach} spaces},
     journal = {Sbornik. Mathematics},
     pages = {531--550},
     year = {2021},
     volume = {212},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_4_a4/}
}
TY  - JOUR
AU  - F. Cabello Sánchez
AU  - J. M. F. Castillo
AU  - R. García
TI  - Homological dimensions of Banach spaces
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 531
EP  - 550
VL  - 212
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_4_a4/
LA  - en
ID  - SM_2021_212_4_a4
ER  - 
%0 Journal Article
%A F. Cabello Sánchez
%A J. M. F. Castillo
%A R. García
%T Homological dimensions of Banach spaces
%J Sbornik. Mathematics
%D 2021
%P 531-550
%V 212
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2021_212_4_a4/
%G en
%F SM_2021_212_4_a4
F. Cabello Sánchez; J. M. F. Castillo; R. García. Homological dimensions of Banach spaces. Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 531-550. http://geodesic.mathdoc.fr/item/SM_2021_212_4_a4/

[1] B. Mitchell, Theory of categories, Pure Appl. Math., 17, Academic Press, New York–London, 1965, xi+273 pp. | MR | Zbl

[2] L. Frerick, D. Sieg, Exact categories in functional analysis, Script, 2010, viii+241 pp. https://www.math.uni-trier.de/abteilung/analysis/HomAlg.pdf

[3] M. Wodzicki, “Homological dimensions of Banach spaces”, Linear and complex analysis problem book 3, Part I, Lecture Notes in Math., 1573, Springer-Verlag, Berlin, 1994, 34–35 | DOI | MR | Zbl

[4] V. P. Palamodov, “The projective limit functor in the category of linear topological spaces”, Math. USSR-Sb., 4:4 (1968), 529–559 | DOI | MR | Zbl

[5] V. P. Palamodov, “Homological methods in the theory of locally convex spaces”, Russian Math. Surveys, 26:1 (1971), 1–64 | DOI | MR | Zbl

[6] J. Wengenroth, Derived functors in functional analysis, Lecture Notes in Math., 1810, Springer-Verlag, Berlin, 2003, viii+134 pp. | DOI | MR | Zbl

[7] J. Wengenroth, “A conjecture of Palamodov about the functors $\operatorname{Ext}^k$ in the category of locally convex spaces”, J. Funct. Anal., 201:2 (2003), 561–571 | DOI | MR | Zbl

[8] F. Cabello Sánchez, J. M. F. Castillo, N. J. Kalton, “Complex interpolation and twisted twisted Hilbert spaces”, Pacific J. Math., 276:2 (2015), 287–307 | DOI | MR | Zbl

[9] F. Cabello Sánchez, J. M. F. Castillo, W. H. G. Corrêa, V. Ferenczi, R. García, “On the $\operatorname{Ext}^2$-problem in Hilbert spaces”, J. Funct. Anal., 280:4 (2021), 108863, 36 pp. | DOI | MR | Zbl

[10] G. Köthe, “Hebbare lokalkonvexe Räume”, Math. Ann., 165 (1966), 181–195 | DOI | MR | Zbl

[11] J. Lindenstrauss, H. P. Rosenthal, “The $\mathscr L_p$-spaces”, Israel J. Math., 7 (1969), 325–349 | DOI | MR | Zbl

[12] A. Avilés, F. Cabello Sánchez, J. M. F. Castillo, M. González, Y. Moreno, Separably injective Banach spaces, Lecture Notes in Math., 2132, Springer, Cham, 2016, xxii+217 pp. | DOI | MR | Zbl

[13] J. Lindenstrauss, “On a certain subspace of $\ell_1$”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 12 (1964), 539–542 | MR | Zbl

[14] N. J. Kalton, A. Pełczyński, “Kernels of surjections from $\mathscr L_1$-spaces with an application to Sidon sets”, Math. Ann., 309:1 (1997), 135–158 | DOI | MR | Zbl

[15] F. Cabello Sánchez, J. M. F. Castillo, “Uniform boundedness and twisted sums of Banach spaces”, Houston J. Math., 30:2 (2004), 523–536 | MR | Zbl

[16] J. M. F. Castillo, Y. Moreno, J. Suárez, “On Lindenstrauss–Pełczyński spaces”, Studia Math., 174:3 (2006), 213–231 | DOI | MR | Zbl

[17] A. Sobczyk, “On the extension of linear transformations”, Trans. Amer. Math. Soc., 55 (1944), 153–169 | DOI | MR | Zbl

[18] M. Zippin, “The separable extension problem”, Israel J. Math., 26:3-4 (1977), 372–387 | DOI | MR | Zbl

[19] W. B. Johnson, M. Zippin, “Extension of operators from weak*-closed subspaces of $\ell_1$ into $C(K)$ spaces”, Studia Math., 117:1 (1995), 43–55 | MR | Zbl

[20] J. M. F. Castillo, M. González, Three-space problems in Banach space theory, Lecture Notes in Math., 1667, Springer-Verlag, Berlin, 1997, xii+267 pp. | DOI | MR | Zbl

[21] P. Enflo, J. Lindenstrauss, G. Pisier, “On the “Three space problem””, Math. Scand., 36 (1975), 199–210 | DOI | MR | Zbl

[22] N. J. Kalton, N. T. Peck, “Twisted sums of sequence spaces and the three space problem”, Trans. Amer. Math. Soc., 255 (1979), 1–30 | DOI | MR | Zbl

[23] J. Bourgain, “A counterexample to a complementation problem”, Compositio Math., 43:1 (1981), 133–144 | MR | Zbl

[24] J. Lindenstrauss, H. P. Rosenthal, “Automorphisms in $c_0$, $\ell_1$ and $m$”, Israel J. Math., 9 (1969), 227–239 | DOI | MR | Zbl

[25] J. Wengenroth, “Palamodov's questions from homological methods in the theory of locally convex spaces”, Methods in Banach space theory (Cáceres, 2004), London Math. Soc. Lecture Note Ser., 337, Cambridge Univ. Press, Cambridge, 2006, 169–182 | DOI | MR | Zbl

[26] J. M. F. Castillo, R. García, “Bilinear forms and the $\operatorname{Ext}^2$-problem in Banach spaces”, Linear Algebra Appl., 566 (2019), 199–211 | DOI | MR | Zbl

[27] A. Avilés, F. Cabello Sánchez, J. M. F. Castillo, M. González, Y. Moreno, “Corrigendum to “On separably injective Banach spaces””, Adv. Math., 318 (2017), 737–747 | DOI | MR | Zbl

[28] W. B. Johnson, J. Lindenstrauss, “Some remarks on weakly compactly generated Banach spaces”, Israel J. Math., 17 (1974), 219–230 | DOI | MR | Zbl

[29] W. Marciszewski, G. Plebanek, “Extension operators and twisted sums of $c_0$ and $C(K)$ spaces”, J. Funct. Anal., 274:5 (2018), 1491–1529 | DOI | MR | Zbl

[30] F. Albiac, N. J. Kalton, Topics in Banach space theory, Grad. Texts in Math., 233, 2nd ed., Springer, Cham, 2016, xx+508 pp. | DOI | MR | Zbl

[31] S. MacLane, Homology, Grundlehren Math. Wiss., 114, 3rd corr. print., Springer-Verlag, Berlin–New York, 1975, x+422 pp. | Zbl

[32] S. I. Gelfand, Yu. I. Manin, Methods of homological algebra, Springer-Verlag, Berlin, 1996, xviii+372 pp. | DOI | MR | MR | Zbl | Zbl

[33] A. Ya. Helemskii, The homology of Banach and topological algebras, Math. Appl. (Soviet Ser.), 41, Kluwer Acad. Publ., Dordrecht, 1989, xx+334 pp. | DOI | MR | MR | Zbl | Zbl

[34] W. B. Johnson, M. Zippin, “On subspaces of quotients of $(\sum G_n )_{\ell_p}$ and $(\sum G_n )_{c_0}$”, Israel J. Math., 13 (1972), 311–316 | DOI | MR | Zbl

[35] J. M. F. Castillo, Y. Moreno, “Sobczyk's theorem and the bounded approximation property”, Studia Math., 201:1 (2010), 1–19 | DOI | MR | Zbl

[36] M. I. Kadec, “On complementably universal Banach spaces”, Studia Math., 40 (1971), 85–89 | DOI | MR | Zbl

[37] A. Pełczyński, “Universal bases”, Studia Math., 32 (1969), 247–268 | DOI | MR | Zbl

[38] A. Pełczyński, P. Wojtaszczyk, “Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces”, Studia Math., 40 (1971), 91–108 | DOI | MR | Zbl

[39] N. J. Kalton, N. T. Peck, J. W. Roberts, An $F$-space sampler, London Math. Soc. Lecture Note Ser., 89, Cambridge Univ. Press, Cambridge, 1984, xii+240 pp. | DOI | MR | Zbl

[40] N. J. Kalton, “Quasi-Banach spaces”, Handbook of the geometry of Banach spaces, v. 2, North-Holland, Amsterdam, 2003, 1099–1130 | DOI | MR | Zbl

[41] W. J. Stiles, “Some properties of $\ell_p$, $0 p 1$”, Studia Math., 42 (1972), 109–119 | MR | Zbl

[42] V. A. Smirnov, Chan Khuen, “On the functor Ext in the category of linear topological spaces”, Math. USSR-Izv., 36:1 (1991), 199–210 | DOI | MR | Zbl

[43] M. Ribe, “Examples for the nonlocally convex three space problem”, Proc. Amer. Math. Soc., 73:3 (1979), 351–355 | DOI | MR | Zbl

[44] N. J. Kalton, “The three space problem for locally bounded $F$-spaces”, Compositio Math., 37:3 (1978), 243–276 | MR | Zbl

[45] J. W. Roberts, “A nonlocally convex $F$-space with the Hahn–Banach approximation property”, Banach spaces of analytic functions (Kent State Univ., Kent, OH, 1976), Lecture Notes in Math., 604, Springer, Berlin, 1977, 76–81 | DOI | MR | Zbl

[46] V. A. Smirnov, V. A. Sheikhman, “Continuation of homogeneous functionals with a given convexity”, Math. Notes, 50:5 (1991), 1157–1161 | DOI | MR | Zbl

[47] S. Dierolf, Über Vererbbarkeitseigenschaften in topologischen Vektorräumen, Dissertation, Ludwing-Maximilians-Univ., München, 1974, 85 pp.

[48] N. J. Kalton, J. W. Roberts, “Uniformly exhaustive submeasures and nearly additive set functions”, Trans. Amer. Math. Soc., 278:2 (1983), 803–816 | DOI | MR | Zbl