Homological dimensions of Banach spaces
Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 531-550

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to lay the foundations for the study of the problem of when $\operatorname{Ext}^n(X, Y)=0$ in Banach spaces. We provide a number of examples of couples $X$$Y$ such that $\operatorname{Ext}^n(X,Y)$ is (or is not) $0$. We show that $\operatorname{Ext}^n(\mathcal K, \mathcal K)\neq 0$ for all $n\in \mathbb{N}$ when $\mathcal K$ is the Kadec space. In particular, both the projective and injective dimensions of $\mathcal K$ are infinite. Bibliography: 48 titles.
Keywords: exact sequence, homology, $\operatorname{Ext}^n$ functor, Banach space
Mots-clés : quasi-Banach space, homological dimension.
@article{SM_2021_212_4_a4,
     author = {F. Cabello S\'anchez and J. M. F. Castillo and R. Garc{\'\i}a},
     title = {Homological dimensions of {Banach} spaces},
     journal = {Sbornik. Mathematics},
     pages = {531--550},
     publisher = {mathdoc},
     volume = {212},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_4_a4/}
}
TY  - JOUR
AU  - F. Cabello Sánchez
AU  - J. M. F. Castillo
AU  - R. García
TI  - Homological dimensions of Banach spaces
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 531
EP  - 550
VL  - 212
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_4_a4/
LA  - en
ID  - SM_2021_212_4_a4
ER  - 
%0 Journal Article
%A F. Cabello Sánchez
%A J. M. F. Castillo
%A R. García
%T Homological dimensions of Banach spaces
%J Sbornik. Mathematics
%D 2021
%P 531-550
%V 212
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_4_a4/
%G en
%F SM_2021_212_4_a4
F. Cabello Sánchez; J. M. F. Castillo; R. García. Homological dimensions of Banach spaces. Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 531-550. http://geodesic.mathdoc.fr/item/SM_2021_212_4_a4/