Locally transitive analytic actions of Lie groups on compact surfaces
Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 490-516 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate locally transitive analytic actions of Lie groups on surfaces. We indicate compact surfaces on which locally transitive actions of Lie groups can be globalized (in particular, with certain conditions on the set of fixed points) and describe the schemes of irreducible locally transitive actions of Lie groups on these surfaces. Bibliography: 13 titles.
Keywords: locally transitive action of a Lie group, fixed points, irreducible action.
Mots-clés : action of a Lie group, surface
@article{SM_2021_212_4_a2,
     author = {V. V. Gorbatsevich},
     title = {Locally transitive analytic actions of {Lie} groups on compact surfaces},
     journal = {Sbornik. Mathematics},
     pages = {490--516},
     year = {2021},
     volume = {212},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_4_a2/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Locally transitive analytic actions of Lie groups on compact surfaces
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 490
EP  - 516
VL  - 212
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_4_a2/
LA  - en
ID  - SM_2021_212_4_a2
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Locally transitive analytic actions of Lie groups on compact surfaces
%J Sbornik. Mathematics
%D 2021
%P 490-516
%V 212
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2021_212_4_a2/
%G en
%F SM_2021_212_4_a2
V. V. Gorbatsevich. Locally transitive analytic actions of Lie groups on compact surfaces. Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 490-516. http://geodesic.mathdoc.fr/item/SM_2021_212_4_a2/

[1] G. D. Mostow, “The extensibility of local Lie groups of transformations and groups on surfaces”, Ann. of Math. (2), 52:3 (1950), 606–636 | DOI | MR | Zbl

[2] T. Bröcker, Differentiable germs and catastrophes, Transl. from the German by L. Lander, London Math. Soc. Lecture Note Ser., 17, Cambridge Univ. Press, Cambridge–New York–Melbourne, 1975, vi+179 pp. | MR | Zbl

[3] V. V. Gorbatsevich, “O pochti odnorodnykh prostranstvakh”, Geometricheskie metody v zadachakh analiza i algebry, Izd-vo YarGU, Yaroslavl, 1978, 43–66 | MR | Zbl

[4] M. W. Hirsch, “Smooth actions of Lie groups and Lie algebras on manifolds”, J. Fixed Point Theory Appl., 10:2 (2011), 219–232 | DOI | MR | Zbl

[5] H. Grauert, “On Levi's problem and the imbedding of real-analytic manifolds”, Ann. of Math. (2), 68:2 (1958), 460–472 | DOI | MR | Zbl

[6] M. W. Hirsch, Differential topology, Grad. Texts in Math., 33, Springer-Verlag, New York–Heidelberg, 1976, x+221 pp. | DOI | MR | MR | Zbl | Zbl

[7] A. B. Brown, “On the locus of an analytic equation in the real plane”, Bull. Amer. Math. Soc., 41:12 (1935), 881–884 | DOI | MR | Zbl

[8] M. Belliart, “Actions sans points fixes sur les surfaces compactes”, Math. Z., 225:3 (1997), 453–465 | DOI | MR | Zbl

[9] J. Winkelmann, The classification of three-dimensional homogeneous complex manifolds, Lecture Notes in Math., 1602, Springer-Verlag, Berlin, 1995, xii+230 pp. | DOI | MR | Zbl

[10] V. V. Gorbatsevich, “Three-dimensional homogeneous spaces”, Siberian Math. J., 18:2 (1977), 200–210 | DOI | MR | Zbl

[11] L. Auslander, L. W. Green, F. J. Hahn, Flows on homogeneous spaces, Ann. of Math. Stud., 53, Princeton Univ. Press, Princeton, NJ, 1963, vii+107 pp. | MR | MR | Zbl | Zbl

[12] V. V. Gorbatsevich, “Classification of complex simply connected homogeneous spaces of dimension not greater than 2”, Russian Math. (Iz. VUZ), 57:3 (2013), 12–25 | DOI | MR | Zbl

[13] V. V. Gorbatsevich, “Intranzitivnye algebry Li vektornykh polei na kompleksnoi ploskosti”, Tr. sem. po vekt. i tenz. analizu, 29, 2013, 27–38