Constructing unbounded discontinuous solutions of scalar conservation laws using the Legendre transform
Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 475-489 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A first-order quasilinear equation with an odd flux function that has a single point of inflexion at zero is studied. A method for constructing sign-alternating discontinuous entropy solutions of this equation, based on the Legendre transform, is proposed. Bibliography: 18 titles.
Keywords: one-dimensional conservation laws, entropy solutions
Mots-clés : Legendre transform.
@article{SM_2021_212_4_a1,
     author = {L. V. Gargyants and A. Yu. Goritsky and E. Yu. Panov},
     title = {Constructing unbounded discontinuous solutions of scalar conservation laws using the {Legendre} transform},
     journal = {Sbornik. Mathematics},
     pages = {475--489},
     year = {2021},
     volume = {212},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_4_a1/}
}
TY  - JOUR
AU  - L. V. Gargyants
AU  - A. Yu. Goritsky
AU  - E. Yu. Panov
TI  - Constructing unbounded discontinuous solutions of scalar conservation laws using the Legendre transform
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 475
EP  - 489
VL  - 212
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_4_a1/
LA  - en
ID  - SM_2021_212_4_a1
ER  - 
%0 Journal Article
%A L. V. Gargyants
%A A. Yu. Goritsky
%A E. Yu. Panov
%T Constructing unbounded discontinuous solutions of scalar conservation laws using the Legendre transform
%J Sbornik. Mathematics
%D 2021
%P 475-489
%V 212
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2021_212_4_a1/
%G en
%F SM_2021_212_4_a1
L. V. Gargyants; A. Yu. Goritsky; E. Yu. Panov. Constructing unbounded discontinuous solutions of scalar conservation laws using the Legendre transform. Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 475-489. http://geodesic.mathdoc.fr/item/SM_2021_212_4_a1/

[1] S. N. Kružkov, “First order quasilinear equations in several independent variables”, Math. USSR-Sb., 10:2 (1970), 217–243 | DOI | MR | Zbl

[2] A. Yu. Goritskii, S. N. Kruzhkov, G. A. Chechkin, Uravneniya s chastnymi proizvodnymi pervogo poryadka, Ucheb. posobie, Izd-vo TsPI pri mekh.-matem. f-te MGU, 1999, 95 pp.

[3] O. A. Oleĭnik, “Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation”, Amer. Math. Soc. Transl. Ser. 2, 33, Amer. Math. Soc., Providence, RI, 1963, 285–290 | DOI | MR | Zbl

[4] A. Yu. Goritskiĭ, “Construction of unbounded entropy solution of Cauchy problem with a countable number of shock waves”, Moscow Univ. Math. Bull., 54:2 (1999), 1–4 | MR | Zbl

[5] A. Yu. Goritsky, E. Yu. Panov, “Example of nonuniqueness of entropy solutions in the class of locally bounded functions”, Russ. J. Math. Phys., 6:4 (1999), 492–494 | MR | Zbl

[6] A. Yu. Goritskiĭ, E. Yu. Panov, “Locally bounded generalized entropy solutions to the Cauchy problem for a first-order quasilinear equation”, Proc. Steklov Inst. Math., 236 (2002), 110–123 | MR | Zbl

[7] E. Yu. Panov, “On well-posedness classes of locally bounded generalized entropy solutions of the Cauchy problem for quasilinear first-order equations”, J. Math. Sci. (N.Y.), 150:6 (2008), 2578–2587 | DOI | MR | Zbl

[8] P. V. Lysukho, E. Yu. Panov, “Existence and uniqueness of unbounded entropy solutions of the Cauchy problem for first-order quasilinear conservation laws”, Differ. Equ., 47:1 (2011), 102–110 | DOI | MR | Zbl

[9] L. V. Gargyants, “Locally bounded solutions of one-dimensional conservation laws”, Differ. Equ., 52:4 (2016), 458–466 | DOI | MR | Zbl

[10] L. V. Gargyants, “Example of nonexistence of a positive generalized entropy solution of a Cauchy problem with unbounded positive initial data”, Russ. J. Math. Phys., 24:3 (2017), 412–414 | DOI | MR | Zbl

[11] L. V. Gargyants, “On locally bounded solutions of the Cauchy problem for a first-order quasilinear equation with power flux function”, Math. Notes, 104:2 (2018), 210–217 | DOI | DOI | MR | Zbl

[12] A. Yu. Goritsky, L. V. Gargyants, “Nonuniqueness of unbounded solutions of the Cauchy problem for scalar conservation laws”, J. Math. Sci. (N.Y.), 244:2 (2020), 183–197 | DOI | MR | Zbl

[13] V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, Grundlehren Math. Wiss., 250, Springer-Verlag, New York–Berlin, 1983, xi+334 pp. | MR | MR | Zbl | Zbl

[14] O. A. Oleĭnik, “The Cauchy problem for nonlinear equations in a class of discontinuous functions”, Amer. Math. Soc. Transl. Ser. 2, 42, Amer. Math. Soc., Providence, RI, 1964, 7–12 | DOI | MR | Zbl

[15] S. N. Kružkov, “Generalized solutions of the Cauchy problem in the large for first order nonlinear equations”, Soviet Math. Dokl., 10 (1969), 785–788 | MR | Zbl

[16] F. Benilan, S. N. Kruzhkov, “Quasilinear first-order equations with continuous nonlinearities”, Dokl. Math., 50:3 (1995), 391–396 | MR | Zbl

[17] S. N. Kruzhkov, E. Yu. Panov, “Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order”, Ann. Univ. Ferrara Sez. VII (N.S.), 40 (1994), 31–54 | MR | Zbl

[18] Ph. Bénilan, S. Kružkov, “Conservation laws with continuous flux functions”, NoDEA Nonlinear Differential Equations Appl., 3:4 (1996), 395–419 | DOI | MR | Zbl