Approximation by simple partial fractions in unbounded domains
Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 449-474 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For unbounded simply connected domains $D$ in the complex plane, bounded by several simple curves with regular asymptotic behaviour at infinity, we obtain necessary conditions and sufficient conditions for simple partial fractions (logarithmic derivatives of polynomials) with poles on the boundary of $D$ to be dense in the space of holomorphic functions in $D$ (with the topology of uniform convergence on compact subsets of $D$). In the case of a strip $\Pi$ bounded by two parallel lines, we give estimates for the convergence rate to zero in the interior of $\Pi$ of simple partial fractions with poles on the boundary of $\Pi$ and with one fixed pole. Bibliography: 16 titles.
Keywords: uniform approximation, simple partial fraction, unbounded domain, density of a semigroup.
@article{SM_2021_212_4_a0,
     author = {P. A. Borodin and K. S. Shklyaev},
     title = {Approximation by simple partial fractions in unbounded domains},
     journal = {Sbornik. Mathematics},
     pages = {449--474},
     year = {2021},
     volume = {212},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_4_a0/}
}
TY  - JOUR
AU  - P. A. Borodin
AU  - K. S. Shklyaev
TI  - Approximation by simple partial fractions in unbounded domains
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 449
EP  - 474
VL  - 212
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_4_a0/
LA  - en
ID  - SM_2021_212_4_a0
ER  - 
%0 Journal Article
%A P. A. Borodin
%A K. S. Shklyaev
%T Approximation by simple partial fractions in unbounded domains
%J Sbornik. Mathematics
%D 2021
%P 449-474
%V 212
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2021_212_4_a0/
%G en
%F SM_2021_212_4_a0
P. A. Borodin; K. S. Shklyaev. Approximation by simple partial fractions in unbounded domains. Sbornik. Mathematics, Tome 212 (2021) no. 4, pp. 449-474. http://geodesic.mathdoc.fr/item/SM_2021_212_4_a0/

[1] J. Korevaar, “Asymptotically neutral distributions of electrons and polynomial approximation”, Ann. of Math. (2), 80:3 (1964), 403–410 | DOI | MR | Zbl

[2] V. I. Danchenko, D. Ya. Danchenko, “Approximation by simplest fractions”, Math. Notes, 70:4 (2001), 502–507 | DOI | DOI | MR | Zbl

[3] P. A. Borodin, “Approximation by simple partial fractions with constraints on the poles”, Sb. Math., 203:11 (2012), 1553–1570 | DOI | DOI | MR | Zbl

[4] P. A. Borodin, “Approximation by simple partial fractions with constraints on the poles. II”, Sb. Math., 207:3 (2016), 331–341 | DOI | DOI | MR | Zbl

[5] J. M. Elkins, “Approximation by polynomials with restricted zeros”, J. Math. Anal. Appl., 25:2 (1969), 321–336 | DOI | MR | Zbl

[6] T. Ganelius, “Sequences of analytic functions and their zeros”, Ark. Mat., 3 (1954), 1–50 | DOI | MR | Zbl

[7] P. A. Borodin, “Density of a semigroup in a Banach space”, Izv. Math., 78:6 (2014), 1079–1104 | DOI | DOI | MR | Zbl

[8] R. R. Phelps, Lectures on Choquet's theorem, D. Van Nostrand Co., Inc., Princeton, NJ–Toronto, ON–London, 1966, v+130 pp. | MR | Zbl | Zbl

[9] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Math. and Math. Phys., 45, Cambridge Univ. Press, New York, 1957, x+166 pp. | MR | MR | Zbl | Zbl

[10] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | MR | MR | Zbl | Zbl

[11] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992, x+300 pp. | DOI | MR | Zbl

[12] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1981, xvi+467 pp. | MR | MR | Zbl | Zbl

[13] V. I. Danchenko, “Estimates of the distances from the poles of logarithmic derivatives of polynomials to lines and circles”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 425–440 | DOI | MR | Zbl

[14] P. Chunaev, “Least deviation of logarithmic derivatives of algebraic polynomials from zero”, J. Approx. Theory, 185 (2014), 98–106 | DOI | MR | Zbl

[15] M. A. Komarov, “Extremal properties of logarithmic derivatives of polynomials”, J. Math. Sci. (N.Y.), 250:1 (2020), 1–9 | DOI | MR | Zbl

[16] V. I. Danchenko, M. A. Komarov, P. V. Chunaev, “Extremal and approximative properties of simple partial fractions”, Russian Math. (Iz. VUZ), 62:12 (2018), 6–41 | DOI | MR | Zbl