Cylinders in rational surfaces
Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 399-415 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We answer a question of Ciliberto's about cylinders in rational surfaces obtained by blowing up the plane at points in general position. Bibliography: 13 titles.
Keywords: rational surfaces, del Pezzo surfaces, cylinders.
@article{SM_2021_212_3_a9,
     author = {I. A. Cheltsov},
     title = {Cylinders in rational surfaces},
     journal = {Sbornik. Mathematics},
     pages = {399--415},
     year = {2021},
     volume = {212},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a9/}
}
TY  - JOUR
AU  - I. A. Cheltsov
TI  - Cylinders in rational surfaces
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 399
EP  - 415
VL  - 212
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_3_a9/
LA  - en
ID  - SM_2021_212_3_a9
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%T Cylinders in rational surfaces
%J Sbornik. Mathematics
%D 2021
%P 399-415
%V 212
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2021_212_3_a9/
%G en
%F SM_2021_212_3_a9
I. A. Cheltsov. Cylinders in rational surfaces. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 399-415. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a9/

[1] I. Cheltsov, “Del Pezzo surfaces and local inequalities”, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 83–101 | DOI | MR | Zbl

[2] I. Cheltsov, Jihun Park, Joonyeong Won, “Affine cones over smooth cubic surfaces”, J. Eur. Math. Soc. (JEMS), 18:7 (2016), 1537–1564 | DOI | MR | Zbl

[3] I. Cheltsov, Jihun Park, Joonyeong Won, “Cylinders in del Pezzo surfaces”, Int. Math. Res. Not. IMRN, 2017:4 (2017), 1179–1230 | DOI | MR | Zbl

[4] C. Ciliberto, B. Harbourne, R. Miranda, J. Roé, “Variations on Nagata's conjecture”, A celebration of algebraic geometry, Clay Math. Proc., 18, Amer. Math. Soc., Providence, RI, 2013, 185–203 | MR | Zbl

[5] T. de Fernex, “Negative curves on very general blow-ups of $\mathbb{P}^{2}$”, Projective varieties with unexpected properties, de Gruyter, Berlin, 2005, 199–207 | MR | Zbl

[6] B. Lehmann, S. Tanimoto, Yu. Tschinkel, “Balanced line bundles on Fano varieties”, J. Reine Angew. Math., 743 (2018), 91–131 | DOI | MR | Zbl

[7] T. Kishimoto, Yu. Prokhorov, M. Zaidenberg, “Group actions on affine cones”, Affine algebraic geometry, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 123–163 | DOI | MR | Zbl

[8] T. Kishimoto, Yu. Prokhorov, M. Zaidenberg, “$\mathbb{G}_a$-actions on affine cones”, Transform. Groups, 18:4 (2013), 1137–1153 | DOI | MR | Zbl

[9] T. Kishimoto, Yu. Prokhorov, M. Zaidenberg, “Unipotent group actions on del Pezzo cones”, Algebraic Geometry, 1:1 (2014), 46–56 | DOI | MR | Zbl

[10] J. Kollár, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, transl. from the 1998 Japan. original, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp. | DOI | MR | Zbl

[11] L. Marquand, Joonyeong Won, “Cylinders in rational surfaces”, Eur. J. Math., 4:3 (2018), 1161–1196 | DOI | MR | Zbl

[12] Yu. G. Prokhorov, “On the Zariski decomposition problem”, Proc. Steklov Inst. Math., 240 (2003), 37–65 | MR | Zbl

[13] F. Sakai, “On polarized normal surfaces”, Manuscripta Math., 59:1 (1987), 109–127 | DOI | MR | Zbl