Mironov Lagrangian cycles in algebraic varieties
Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 389-398

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize a construction due to Mironov. Some time ago he presented new examples of minimal and Hamiltonian minimal Lagrangian submanifolds in $\mathbb{C}^n$ and $\mathbb{C} \mathbb{P}^n$. His construction is based on the considerations of a noncomplete toric action of $T^k$, where $k n$, on subspaces that are invariant with respect to the action of a natural antiholomorphic involution. This situation takes place for a rather broad class of algebraic varieties: complex quadrics, Grassmannians, flag varieties and so on, which makes it possible to construct many new examples of Lagrangian submanifolds in these algebraic varieties. Bibliography: 4 titles.
Keywords: algebraic variety, symplectic structure, Lagrangian submanifold.
@article{SM_2021_212_3_a8,
     author = {N. A. Tyurin},
     title = {Mironov {Lagrangian} cycles in algebraic varieties},
     journal = {Sbornik. Mathematics},
     pages = {389--398},
     publisher = {mathdoc},
     volume = {212},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a8/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - Mironov Lagrangian cycles in algebraic varieties
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 389
EP  - 398
VL  - 212
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_3_a8/
LA  - en
ID  - SM_2021_212_3_a8
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T Mironov Lagrangian cycles in algebraic varieties
%J Sbornik. Mathematics
%D 2021
%P 389-398
%V 212
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_3_a8/
%G en
%F SM_2021_212_3_a8
N. A. Tyurin. Mironov Lagrangian cycles in algebraic varieties. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 389-398. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a8/