Mironov Lagrangian cycles in algebraic varieties
Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 389-398 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We generalize a construction due to Mironov. Some time ago he presented new examples of minimal and Hamiltonian minimal Lagrangian submanifolds in $\mathbb{C}^n$ and $\mathbb{C} \mathbb{P}^n$. His construction is based on the considerations of a noncomplete toric action of $T^k$, where $k < n$, on subspaces that are invariant with respect to the action of a natural antiholomorphic involution. This situation takes place for a rather broad class of algebraic varieties: complex quadrics, Grassmannians, flag varieties and so on, which makes it possible to construct many new examples of Lagrangian submanifolds in these algebraic varieties. Bibliography: 4 titles.
Keywords: algebraic variety, symplectic structure, Lagrangian submanifold.
@article{SM_2021_212_3_a8,
     author = {N. A. Tyurin},
     title = {Mironov {Lagrangian} cycles in algebraic varieties},
     journal = {Sbornik. Mathematics},
     pages = {389--398},
     year = {2021},
     volume = {212},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a8/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - Mironov Lagrangian cycles in algebraic varieties
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 389
EP  - 398
VL  - 212
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_3_a8/
LA  - en
ID  - SM_2021_212_3_a8
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T Mironov Lagrangian cycles in algebraic varieties
%J Sbornik. Mathematics
%D 2021
%P 389-398
%V 212
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2021_212_3_a8/
%G en
%F SM_2021_212_3_a8
N. A. Tyurin. Mironov Lagrangian cycles in algebraic varieties. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 389-398. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a8/

[1] A. E. Mironov, “New examples of Hamilton-minimal and minimal Lagrangian manifolds in $\mathbb C^n$ and $\mathbb C\mathrm P^n$”, Sb. Math., 195:1 (2004), 85–96 | DOI | DOI | MR | Zbl

[2] N. A. Tyurin, “Pseudotoric structures: Lagrangian submanifolds and Lagrangian fibrations”, Russian Math. Surveys, 72:3 (2017), 513–546 | DOI | DOI | MR | Zbl

[3] M. Audin, Torus actions on symplectic manifolds, Progr. Math., 93, 2nd rev. ed., Birkhäuser Verlag, Basel, 2004, viii+325 pp. | DOI | MR | Zbl

[4] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York, 1978, xii+813 pp. | MR | MR | Zbl | Zbl