Mironov Lagrangian cycles in algebraic varieties
Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 389-398
Voir la notice de l'article provenant de la source Math-Net.Ru
We generalize a construction due to Mironov. Some time ago he presented new examples of minimal and Hamiltonian minimal Lagrangian submanifolds in $\mathbb{C}^n$ and $\mathbb{C} \mathbb{P}^n$. His construction is based on the considerations of a noncomplete toric action of $T^k$, where $k n$, on subspaces that are invariant with respect to the action of a natural antiholomorphic involution. This situation takes place for a rather broad class of algebraic varieties: complex quadrics, Grassmannians, flag varieties and so on, which makes it possible to construct many new examples of Lagrangian submanifolds in these algebraic varieties.
Bibliography: 4 titles.
Keywords:
algebraic variety, symplectic structure, Lagrangian submanifold.
@article{SM_2021_212_3_a8,
author = {N. A. Tyurin},
title = {Mironov {Lagrangian} cycles in algebraic varieties},
journal = {Sbornik. Mathematics},
pages = {389--398},
publisher = {mathdoc},
volume = {212},
number = {3},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a8/}
}
N. A. Tyurin. Mironov Lagrangian cycles in algebraic varieties. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 389-398. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a8/