On automorphisms of quasi-smooth weighted complete intersections
Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 374-388

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that every reductive subgroup of the automorphism group of a quasi-smooth well-formed weighted complete intersection of dimension at least $3$ is a restriction of a subgroup in the automorphism group in the ambient weighted projective space. Also, we provide examples demonstrating that the automorphism group of a quasi-smooth well-formed Fano weighted complete intersection may be infinite and even non-reductive. Bibliography: 25 titles.
Keywords: weighted complete intersection, linear algebraic group.
Mots-clés : automorphism group
@article{SM_2021_212_3_a7,
     author = {V. V. Przyjalkowski and {\CYRS}. A. Shramov},
     title = {On automorphisms of quasi-smooth weighted complete intersections},
     journal = {Sbornik. Mathematics},
     pages = {374--388},
     publisher = {mathdoc},
     volume = {212},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a7/}
}
TY  - JOUR
AU  - V. V. Przyjalkowski
AU  - С. A. Shramov
TI  - On automorphisms of quasi-smooth weighted complete intersections
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 374
EP  - 388
VL  - 212
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_3_a7/
LA  - en
ID  - SM_2021_212_3_a7
ER  - 
%0 Journal Article
%A V. V. Przyjalkowski
%A С. A. Shramov
%T On automorphisms of quasi-smooth weighted complete intersections
%J Sbornik. Mathematics
%D 2021
%P 374-388
%V 212
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_3_a7/
%G en
%F SM_2021_212_3_a7
V. V. Przyjalkowski; С. A. Shramov. On automorphisms of quasi-smooth weighted complete intersections. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 374-388. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a7/