On automorphisms of quasi-smooth weighted complete intersections
Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 374-388
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that every reductive subgroup of the automorphism group of a quasi-smooth well-formed weighted complete intersection of dimension at least $3$ is a restriction of a subgroup in the automorphism group in the ambient weighted projective space. Also, we provide examples demonstrating that the automorphism group of a quasi-smooth well-formed Fano weighted complete intersection may be infinite and even non-reductive.
Bibliography: 25 titles.
Keywords:
weighted complete intersection, linear algebraic group.
Mots-clés : automorphism group
Mots-clés : automorphism group
@article{SM_2021_212_3_a7,
author = {V. V. Przyjalkowski and {\CYRS}. A. Shramov},
title = {On automorphisms of quasi-smooth weighted complete intersections},
journal = {Sbornik. Mathematics},
pages = {374--388},
publisher = {mathdoc},
volume = {212},
number = {3},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a7/}
}
V. V. Przyjalkowski; С. A. Shramov. On automorphisms of quasi-smooth weighted complete intersections. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 374-388. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a7/