General elephants for threefold extremal contractions with one-dimensional fibres: exceptional case
Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 351-373 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $(X, C)$ be a germ of a threefold $X$ with terminal singularities along a connected reduced complete curve $C$ with a contraction $f \colon (X, C) \to (Z, o)$ such that $C = f^{-1} (o)_{\mathrm{red}}$ and $-K_X$ is $f$-ample. Assume that each irreducible component of $C$ contains at most one point of index ${>2}$. We prove that a general member $D\in |{-}K_X|$ is a normal surface with Du Val singularities. Bibliography: 16 titles.
Keywords: terminal singularity, extremal curve germ, flip, divisorial contraction, $\mathbb{Q}$-conic bundle.
@article{SM_2021_212_3_a6,
     author = {S. Mori and Yu. G. Prokhorov},
     title = {General elephants for threefold extremal contractions with one-dimensional fibres: exceptional case},
     journal = {Sbornik. Mathematics},
     pages = {351--373},
     year = {2021},
     volume = {212},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a6/}
}
TY  - JOUR
AU  - S. Mori
AU  - Yu. G. Prokhorov
TI  - General elephants for threefold extremal contractions with one-dimensional fibres: exceptional case
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 351
EP  - 373
VL  - 212
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_3_a6/
LA  - en
ID  - SM_2021_212_3_a6
ER  - 
%0 Journal Article
%A S. Mori
%A Yu. G. Prokhorov
%T General elephants for threefold extremal contractions with one-dimensional fibres: exceptional case
%J Sbornik. Mathematics
%D 2021
%P 351-373
%V 212
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2021_212_3_a6/
%G en
%F SM_2021_212_3_a6
S. Mori; Yu. G. Prokhorov. General elephants for threefold extremal contractions with one-dimensional fibres: exceptional case. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 351-373. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a6/

[1] Yu. Kawamata, “Crepant blowing-up of $3$-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. of Math. (2), 127:1 (1988), 93–163 | DOI | MR | Zbl

[2] J. Kollár, S. Mori, “Classification of three-dimensional flips”, J. Amer. Math. Soc., 5:3 (1992), 533–703 | DOI | MR | Zbl

[3] J. Kollár, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, transl. from the 1998 Japan. original, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp. | DOI | MR | Zbl

[4] J. Kollár, “Real algebraic threefolds. III. Conic bundles”, J. Math. Sci. (N.Y.), 94:1 (1999), 996–1020 | DOI | MR | Zbl

[5] J. Kollár, N. I. Shepherd-Barron, “Threefolds and deformations of surface singularities”, Invent. Math., 91:2 (1988), 299–338 | DOI | MR | Zbl

[6] S. Mori, “Flip theorem and the existence of minimal models for $3$-folds”, J. Amer. Math. Soc., 1:1 (1988), 117–253 | DOI | MR | Zbl

[7] S. Mori, “On semistable extremal neighborhoods”, Higher dimensional birational geometry (Kyoto, 1997), Adv. Stud. Pure Math., 35, Math. Soc. Japan, Tokyo, 2002, 157–184 | DOI | MR | Zbl

[8] S. Mori, “Errata to “Classification of three-dimensional flips””, J. Amer. Math. Soc., 20:1 (2007), 269–271 | DOI | MR | Zbl

[9] S. Mori, Yu. Prokhorov, “On $\mathbb Q$-conic bundles”, Publ. Res. Inst. Math. Sci., 44:2 (2008), 315–369 | DOI | MR | Zbl

[10] S. Mori, Yu. Prokhorov, “On $\mathbb Q$-conic bundles. II”, Publ. Res. Inst. Math. Sci., 44:3 (2008), 955–971 | DOI | MR | Zbl

[11] S. Mori, Yu. Prokhorov, “On $\mathbb Q$-conic bundles. III”, Publ. Res. Inst. Math. Sci., 45:3 (2009), 787–810 | DOI | MR | Zbl

[12] S. Mori, Yu. Prokhorov, “Threefold extremal contractions of type (IA)”, Kyoto J. Math., 51:2 (2011), 393–438 | DOI | MR | Zbl

[13] S. Mori, Yu. G. Prokhorov, “Threefold extremal curve germs with one non-Gorenstein point”, Izv. Math., 83:3 (2019), 565–612 | DOI | DOI | MR | Zbl

[14] Yu. G. Prokhorov, “On the existence of complements of the canonical divisor for Mori conic bundles”, Sb. Math., 188:11 (1997), 1665–1685 | DOI | DOI | MR | Zbl

[15] M. Reid, “Young person's guide to canonical singularities”, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987, 345–414 | DOI | MR | Zbl

[16] V. V. Shokurov, “3-fold log flips”, Russian Acad. Sci. Izv. Math., 40:1 (1993), 95–202 | DOI | MR | Zbl