@article{SM_2021_212_3_a6,
author = {S. Mori and Yu. G. Prokhorov},
title = {General elephants for threefold extremal contractions with one-dimensional fibres: exceptional case},
journal = {Sbornik. Mathematics},
pages = {351--373},
year = {2021},
volume = {212},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a6/}
}
TY - JOUR AU - S. Mori AU - Yu. G. Prokhorov TI - General elephants for threefold extremal contractions with one-dimensional fibres: exceptional case JO - Sbornik. Mathematics PY - 2021 SP - 351 EP - 373 VL - 212 IS - 3 UR - http://geodesic.mathdoc.fr/item/SM_2021_212_3_a6/ LA - en ID - SM_2021_212_3_a6 ER -
S. Mori; Yu. G. Prokhorov. General elephants for threefold extremal contractions with one-dimensional fibres: exceptional case. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 351-373. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a6/
[1] Yu. Kawamata, “Crepant blowing-up of $3$-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. of Math. (2), 127:1 (1988), 93–163 | DOI | MR | Zbl
[2] J. Kollár, S. Mori, “Classification of three-dimensional flips”, J. Amer. Math. Soc., 5:3 (1992), 533–703 | DOI | MR | Zbl
[3] J. Kollár, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, transl. from the 1998 Japan. original, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp. | DOI | MR | Zbl
[4] J. Kollár, “Real algebraic threefolds. III. Conic bundles”, J. Math. Sci. (N.Y.), 94:1 (1999), 996–1020 | DOI | MR | Zbl
[5] J. Kollár, N. I. Shepherd-Barron, “Threefolds and deformations of surface singularities”, Invent. Math., 91:2 (1988), 299–338 | DOI | MR | Zbl
[6] S. Mori, “Flip theorem and the existence of minimal models for $3$-folds”, J. Amer. Math. Soc., 1:1 (1988), 117–253 | DOI | MR | Zbl
[7] S. Mori, “On semistable extremal neighborhoods”, Higher dimensional birational geometry (Kyoto, 1997), Adv. Stud. Pure Math., 35, Math. Soc. Japan, Tokyo, 2002, 157–184 | DOI | MR | Zbl
[8] S. Mori, “Errata to “Classification of three-dimensional flips””, J. Amer. Math. Soc., 20:1 (2007), 269–271 | DOI | MR | Zbl
[9] S. Mori, Yu. Prokhorov, “On $\mathbb Q$-conic bundles”, Publ. Res. Inst. Math. Sci., 44:2 (2008), 315–369 | DOI | MR | Zbl
[10] S. Mori, Yu. Prokhorov, “On $\mathbb Q$-conic bundles. II”, Publ. Res. Inst. Math. Sci., 44:3 (2008), 955–971 | DOI | MR | Zbl
[11] S. Mori, Yu. Prokhorov, “On $\mathbb Q$-conic bundles. III”, Publ. Res. Inst. Math. Sci., 45:3 (2009), 787–810 | DOI | MR | Zbl
[12] S. Mori, Yu. Prokhorov, “Threefold extremal contractions of type (IA)”, Kyoto J. Math., 51:2 (2011), 393–438 | DOI | MR | Zbl
[13] S. Mori, Yu. G. Prokhorov, “Threefold extremal curve germs with one non-Gorenstein point”, Izv. Math., 83:3 (2019), 565–612 | DOI | DOI | MR | Zbl
[14] Yu. G. Prokhorov, “On the existence of complements of the canonical divisor for Mori conic bundles”, Sb. Math., 188:11 (1997), 1665–1685 | DOI | DOI | MR | Zbl
[15] M. Reid, “Young person's guide to canonical singularities”, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987, 345–414 | DOI | MR | Zbl
[16] V. V. Shokurov, “3-fold log flips”, Russian Acad. Sci. Izv. Math., 40:1 (1993), 95–202 | DOI | MR | Zbl