@article{SM_2021_212_3_a5,
author = {Y. Li and G. Tian and X. Zhu},
title = {Uniform $\mathrm{K}$-stability modulo a~subgroup},
journal = {Sbornik. Mathematics},
pages = {332--350},
year = {2021},
volume = {212},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a5/}
}
Y. Li; G. Tian; X. Zhu. Uniform $\mathrm{K}$-stability modulo a subgroup. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 332-350. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a5/
[1] Chi Li, Chenyang Xu, “Special test-configurations and $K$-stability of Fano varieties”, Ann. of Math. (2), 180:1 (2014), 197–232 | DOI | MR | Zbl
[2] S. T. Paul, “Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics”, Ann. of Math. (2), 175:1 (2012), 255–296 | DOI | MR | Zbl
[3] S. T. Paul, A numerical criterion for $K$-energy maps of algebraic manifolds, arXiv: 1210.0924v1
[4] S. T. Paul, Gang Tian, “CM stability and the generalized Futaki invariant II”, Astérisque, 328, Soc. Math. France, Paris, 2009, 339–354 | MR | Zbl
[5] Gang Tian, “Kähler–Einstein metrics with positive scalar curvature”, Invent. Math., 130:1 (1997), 1–37 | DOI | MR | Zbl
[6] Gang Tian, “Kähler–Einstein metrics on Fano manifolds”, Jpn. J. Math., 10:1 (2015), 1–41 | DOI | MR | Zbl
[7] G. Tian, On uniform $K$-stability of pairs, arXiv: 1812.05746