Uniform $\mathrm{K}$-stability modulo a~subgroup
Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 332-350
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove a version of uniform $\mathrm{K}$-stability for a pair $(v,w)$ with respect to a reductive Lie group $\mathbf G$ modulo a subgroup $\mathbf G_0$ of $\mathbf G$.
Bibliography: 7 titles.
Keywords:
uniform $\mathrm{K}$-stability, weights, polytopes.
@article{SM_2021_212_3_a5,
author = {Y. Li and G. Tian and X. Zhu},
title = {Uniform $\mathrm{K}$-stability modulo a~subgroup},
journal = {Sbornik. Mathematics},
pages = {332--350},
publisher = {mathdoc},
volume = {212},
number = {3},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a5/}
}
Y. Li; G. Tian; X. Zhu. Uniform $\mathrm{K}$-stability modulo a~subgroup. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 332-350. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a5/