Uniform $\mathrm{K}$-stability modulo a~subgroup
Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 332-350

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove a version of uniform $\mathrm{K}$-stability for a pair $(v,w)$ with respect to a reductive Lie group $\mathbf G$ modulo a subgroup $\mathbf G_0$ of $\mathbf G$. Bibliography: 7 titles.
Keywords: uniform $\mathrm{K}$-stability, weights, polytopes.
@article{SM_2021_212_3_a5,
     author = {Y. Li and G. Tian and X. Zhu},
     title = {Uniform $\mathrm{K}$-stability modulo a~subgroup},
     journal = {Sbornik. Mathematics},
     pages = {332--350},
     publisher = {mathdoc},
     volume = {212},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a5/}
}
TY  - JOUR
AU  - Y. Li
AU  - G. Tian
AU  - X. Zhu
TI  - Uniform $\mathrm{K}$-stability modulo a~subgroup
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 332
EP  - 350
VL  - 212
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_3_a5/
LA  - en
ID  - SM_2021_212_3_a5
ER  - 
%0 Journal Article
%A Y. Li
%A G. Tian
%A X. Zhu
%T Uniform $\mathrm{K}$-stability modulo a~subgroup
%J Sbornik. Mathematics
%D 2021
%P 332-350
%V 212
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_3_a5/
%G en
%F SM_2021_212_3_a5
Y. Li; G. Tian; X. Zhu. Uniform $\mathrm{K}$-stability modulo a~subgroup. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 332-350. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a5/