Uniform $\mathrm{K}$-stability modulo a subgroup
Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 332-350 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we prove a version of uniform $\mathrm{K}$-stability for a pair $(v,w)$ with respect to a reductive Lie group $\mathbf G$ modulo a subgroup $\mathbf G_0$ of $\mathbf G$. Bibliography: 7 titles.
Keywords: uniform $\mathrm{K}$-stability, weights, polytopes.
@article{SM_2021_212_3_a5,
     author = {Y. Li and G. Tian and X. Zhu},
     title = {Uniform $\mathrm{K}$-stability modulo a~subgroup},
     journal = {Sbornik. Mathematics},
     pages = {332--350},
     year = {2021},
     volume = {212},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a5/}
}
TY  - JOUR
AU  - Y. Li
AU  - G. Tian
AU  - X. Zhu
TI  - Uniform $\mathrm{K}$-stability modulo a subgroup
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 332
EP  - 350
VL  - 212
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_3_a5/
LA  - en
ID  - SM_2021_212_3_a5
ER  - 
%0 Journal Article
%A Y. Li
%A G. Tian
%A X. Zhu
%T Uniform $\mathrm{K}$-stability modulo a subgroup
%J Sbornik. Mathematics
%D 2021
%P 332-350
%V 212
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2021_212_3_a5/
%G en
%F SM_2021_212_3_a5
Y. Li; G. Tian; X. Zhu. Uniform $\mathrm{K}$-stability modulo a subgroup. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 332-350. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a5/

[1] Chi Li, Chenyang Xu, “Special test-configurations and $K$-stability of Fano varieties”, Ann. of Math. (2), 180:1 (2014), 197–232 | DOI | MR | Zbl

[2] S. T. Paul, “Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics”, Ann. of Math. (2), 175:1 (2012), 255–296 | DOI | MR | Zbl

[3] S. T. Paul, A numerical criterion for $K$-energy maps of algebraic manifolds, arXiv: 1210.0924v1

[4] S. T. Paul, Gang Tian, “CM stability and the generalized Futaki invariant II”, Astérisque, 328, Soc. Math. France, Paris, 2009, 339–354 | MR | Zbl

[5] Gang Tian, “Kähler–Einstein metrics with positive scalar curvature”, Invent. Math., 130:1 (1997), 1–37 | DOI | MR | Zbl

[6] Gang Tian, “Kähler–Einstein metrics on Fano manifolds”, Jpn. J. Math., 10:1 (2015), 1–41 | DOI | MR | Zbl

[7] G. Tian, On uniform $K$-stability of pairs, arXiv: 1812.05746