Mots-clés : birational invariant.
@article{SM_2021_212_3_a4,
author = {A. Kresch and Yu. Tschinkel},
title = {Birational types of algebraic orbifolds},
journal = {Sbornik. Mathematics},
pages = {319--331},
year = {2021},
volume = {212},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a4/}
}
A. Kresch; Yu. Tschinkel. Birational types of algebraic orbifolds. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 319-331. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a4/
[1] D. Abramovich, T. Graber, A. Vistoli, “Gromov–Witten theory of Deligne–Mumford stacks”, Amer. J. Math., 130:5 (2008), 1337–1398 | DOI | MR | Zbl
[2] D. Abramovich, K. Karu, K. Matsuki, J. Włodarczyk, “Torification and factorization of birational maps”, J. Amer. Math. Soc., 15:3 (2002), 531–572 | DOI | MR | Zbl
[3] D. Abramovich, M. Temkin, “Functorial factorization of birational maps for qe schemes in characteristic $0$”, Algebra Number Theory, 13:2 (2019), 379–424 | DOI | MR | Zbl
[4] K. Behrend, B. Noohi, “Uniformization of Deligne–Mumford curves”, J. Reine Angew. Math., 2006:599 (2006), 111–153 | DOI | MR | Zbl
[5] D. Bergh, “Functorial destackification of tame stacks with abelian stabilisers”, Compos. Math., 153:6 (2017), 1257–1315 | DOI | MR | Zbl
[6] D. Bergh, D. Rydh, Functorial destackification and weak factorization of orbifolds, arXiv: 1905.00872
[7] E. Bierstone, P. D. Milman, “Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant”, Invent. Math., 128:2 (1997), 207–302 | DOI | MR | Zbl
[8] F. Bittner, “The universal Euler characteristic for varieties of characteristic zero”, Compos. Math., 140:4 (2004), 1011–1032 | DOI | MR | Zbl
[9] K. S. Brown, Cohomology of groups, Grad. Texts in Math., 87, Springer-Verlag, New York–Berlin, 1982, x+306 pp. | DOI | MR | MR | Zbl | Zbl
[10] C. Cadman, “Using stacks to impose tangency conditions on curves”, Amer. J. Math., 129:2 (2007), 405–427 | DOI | MR | Zbl
[11] S. Keel, S. Mori, “Quotients by groupoids”, Ann. of Math. (2), 145:1 (1997), 193–213 | DOI | MR | Zbl
[12] S. L. Kleiman, A. B. Altman, “Bertini theorems for hypersurface sections containing a subscheme”, Comm. Algebra, 7:8 (1979), 775–790 | DOI | MR | Zbl
[13] M. Kontsevich, V. Pestun, Yu. Tschinkel, “Equivariant birational geometry and modular symbols”, J. Eur. Math. Soc. (to appear)
[14] M. Kontsevich, Yu. Tschinkel, “Specialization of birational types”, Invent. Math., 217:2 (2019), 415–432 | DOI | MR | Zbl
[15] A. Kresch, “On the geometry of Deligne–Mumford stacks”, Algebraic geometry, Part 1 (Seattle, 2005), Proc. Sympos. Pure Math., 80, Part 1, Amer. Math. Soc., Providence, RI, 2009, 259–271 | DOI | MR | Zbl
[16] A. Kresch, “Destackification with restricted root operations”, Eur. J. Math., 4:4 (2018), 1421–1432 | DOI | MR | Zbl
[17] Ju. I. Manin, “Parabolic points and zeta-functions of modular curves”, Math. USSR-Izv., 6:1 (1972), 19–64 | DOI | MR | Zbl
[18] I. Moerdijk, “Orbifolds as groupoids: an introduction”, Orbifolds in mathematics and physics (Madison, WI, 2001), Contemp. Math., 310, Amer. Math. Soc., Providence, RI, 2002, 205–222 | DOI | MR | Zbl
[19] J. Oesinghaus, “Conic bundles and iterated root stacks”, Eur. J. Math., 5:2 (2019), 518–527 | DOI | MR | Zbl
[20] O. E. Villamayor, “Patching local uniformizations”, Ann. Sci. École Norm. Sup. (4), 25:6 (1992), 629–677 | DOI | MR | Zbl