Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles
Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 305-318
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a vector bundle of arbitrary rank with ample determinant line bundle on a projective manifold, we propose a new elliptic system of differential equations of Hermitian-Yang-Mills type for the curvature tensor. The system is designed so that solutions provide Hermitian metrics with positive curvature in the sense of Griffiths — and even in the dual Nakano sense. As a consequence, if an existence result could be obtained for every ample vector bundle, the Griffiths conjecture on the equivalence between ampleness and positivity of vector bundles would be settled.
Bibliography: 15 titles.
Keywords:
ample vector bundle, Griffiths positivity, Hermitian-Yang-Mills equation.
@article{SM_2021_212_3_a3,
author = {J.-P. Demailly},
title = {Hermitian-Yang-Mills approach to the conjecture of {Griffiths} on the positivity of ample vector bundles},
journal = {Sbornik. Mathematics},
pages = {305--318},
publisher = {mathdoc},
volume = {212},
number = {3},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a3/}
}
TY - JOUR AU - J.-P. Demailly TI - Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles JO - Sbornik. Mathematics PY - 2021 SP - 305 EP - 318 VL - 212 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2021_212_3_a3/ LA - en ID - SM_2021_212_3_a3 ER -
J.-P. Demailly. Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 305-318. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a3/