Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles
Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 305-318

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a vector bundle of arbitrary rank with ample determinant line bundle on a projective manifold, we propose a new elliptic system of differential equations of Hermitian-Yang-Mills type for the curvature tensor. The system is designed so that solutions provide Hermitian metrics with positive curvature in the sense of Griffiths — and even in the dual Nakano sense. As a consequence, if an existence result could be obtained for every ample vector bundle, the Griffiths conjecture on the equivalence between ampleness and positivity of vector bundles would be settled. Bibliography: 15 titles.
Keywords: ample vector bundle, Griffiths positivity, Hermitian-Yang-Mills equation.
@article{SM_2021_212_3_a3,
     author = {J.-P. Demailly},
     title = {Hermitian-Yang-Mills approach to the conjecture of {Griffiths} on the positivity of ample vector bundles},
     journal = {Sbornik. Mathematics},
     pages = {305--318},
     publisher = {mathdoc},
     volume = {212},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a3/}
}
TY  - JOUR
AU  - J.-P. Demailly
TI  - Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 305
EP  - 318
VL  - 212
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_3_a3/
LA  - en
ID  - SM_2021_212_3_a3
ER  - 
%0 Journal Article
%A J.-P. Demailly
%T Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles
%J Sbornik. Mathematics
%D 2021
%P 305-318
%V 212
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_3_a3/
%G en
%F SM_2021_212_3_a3
J.-P. Demailly. Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 305-318. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a3/