Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles
Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 305-318 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a vector bundle of arbitrary rank with ample determinant line bundle on a projective manifold, we propose a new elliptic system of differential equations of Hermitian-Yang-Mills type for the curvature tensor. The system is designed so that solutions provide Hermitian metrics with positive curvature in the sense of Griffiths — and even in the dual Nakano sense. As a consequence, if an existence result could be obtained for every ample vector bundle, the Griffiths conjecture on the equivalence between ampleness and positivity of vector bundles would be settled. Bibliography: 15 titles.
Keywords: ample vector bundle, Griffiths positivity, Hermitian-Yang-Mills equation.
@article{SM_2021_212_3_a3,
     author = {J.-P. Demailly},
     title = {Hermitian-Yang-Mills approach to the conjecture of {Griffiths} on the positivity of ample vector bundles},
     journal = {Sbornik. Mathematics},
     pages = {305--318},
     year = {2021},
     volume = {212},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a3/}
}
TY  - JOUR
AU  - J.-P. Demailly
TI  - Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 305
EP  - 318
VL  - 212
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_3_a3/
LA  - en
ID  - SM_2021_212_3_a3
ER  - 
%0 Journal Article
%A J.-P. Demailly
%T Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles
%J Sbornik. Mathematics
%D 2021
%P 305-318
%V 212
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2021_212_3_a3/
%G en
%F SM_2021_212_3_a3
J.-P. Demailly. Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 305-318. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a3/

[1] B. Berndtsson, “Curvature of vector bundles associated to holomorphic fibrations”, Ann. of Math. (2), 169:2 (2009), 531–560 | DOI | MR | Zbl

[2] F. Campana, H. Flenner, “A characterization of ample vector bundles on a curve”, Math. Ann., 287:4 (1990), 571–575 | DOI | MR | Zbl

[3] J.-P. Demailly, H. Skoda, “Relations entre les notions de positivités de P. A. Griffiths et de S. Nakano pour les fibrés vectoriels”, Séminaire Pierre Lelong–Henri Skoda (Analyse). Années 1978/79, Lecture Notes in Math., 822, Springer, Berlin, 1980, 304–309 | DOI | MR | Zbl

[4] S. K. Donaldson, “Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles”, Proc. London Math. Soc. (3), 50:1 (1985), 1–26 | DOI | MR | Zbl

[5] P. A. Griffiths, “Hermitian differential geometry, Chern classes and positive vector bundles”, Global analysis, Papers in honor of K. Kodaira, Univ. Tokyo Press, Tokyo, 1969, 181–251 | MR | Zbl

[6] K. Kodaira, “On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties)”, Ann. of Math. (2), 60 (1954), 28–48 | DOI | MR | Zbl

[7] C. Mourougane, S. Takayama, “Hodge metrics and positivity of direct images”, J. Reine Angew. Math., 2007:606 (2007), 167–178 | DOI | MR | Zbl

[8] S. Nakano, “On complex analytic vector bundles”, J. Math. Soc. Japan, 7 (1955), 1–12 | DOI | MR | Zbl

[9] M. S. Narasimhan, C. S. Seshadri, “Stable and unitary vector bundles on a compact Riemann surface”, Ann. of Math. (2), 82:3 (1965), 540–567 | DOI | MR | Zbl

[10] P. Naumann, An approach to Griffiths conjecture, arXiv: 1710.10034

[11] V. P. Pingali, “A vector bundle version of the Monge–Ampère equation”, Adv. Math., 360 (2020), 106921, 40 pp. | DOI | MR | Zbl

[12] V. P. Pingali, “A note on Demailly's approach towards a conjecture of Griffiths”, C. R. Math. Acad. Sci. Paris, 2021 (to appear)

[13] K. Uhlenbeck, S. T. Yau, “On the existence of Hermitian–Yang–Mills connections in stable vector bundles”, Comm. Pure Appl. Math., 39:S, suppl. (1986), 257–293 | DOI | MR | Zbl

[14] H. Umemura, “Some results in the theory of vector bundles”, Nagoya Math. J., 52 (1973), 97–128 | DOI | MR | Zbl

[15] Shing-Tung Yau, “On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I”, Comm. Pure Appl. Math., 31:3 (1978), 339–411 | DOI | MR | Zbl