Singularities on toric fibrations
Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 288-304 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we investigate singularities on toric fibrations. In this context we study a conjecture of Shokurov (a special case of which is due to M\textsuperscript{c}Kernan) which roughly says that if $(X,B)\to Z$ is an $\varepsilon$-lc Fano-type log Calabi-Yau fibration, then the singularities of the log base $(Z,B_Z+M_Z)$ are bounded in terms of $\varepsilon$ and $\dim X$ where $B_Z$ and $M_Z$ are the discriminant and moduli divisors of the canonical bundle formula. A corollary of our main result says that if $X\to Z$ is a toric Fano fibration with $X$ being $\varepsilon$-lc, then the multiplicities of the fibres over codimension one points are bounded depending only on $\varepsilon$ and $\dim X$. Bibliography: 20 titles.
Keywords: toric varieties, Shokurov's conjecture, singularities of pairs.
@article{SM_2021_212_3_a2,
     author = {C. Birkar and Y. Chen},
     title = {Singularities on toric fibrations},
     journal = {Sbornik. Mathematics},
     pages = {288--304},
     year = {2021},
     volume = {212},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a2/}
}
TY  - JOUR
AU  - C. Birkar
AU  - Y. Chen
TI  - Singularities on toric fibrations
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 288
EP  - 304
VL  - 212
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_3_a2/
LA  - en
ID  - SM_2021_212_3_a2
ER  - 
%0 Journal Article
%A C. Birkar
%A Y. Chen
%T Singularities on toric fibrations
%J Sbornik. Mathematics
%D 2021
%P 288-304
%V 212
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2021_212_3_a2/
%G en
%F SM_2021_212_3_a2
C. Birkar; Y. Chen. Singularities on toric fibrations. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 288-304. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a2/

[1] V. Alexeev, A. Borisov, “On the log discrepancies in toric Mori contractions”, Proc. Amer. Math. Soc., 142:11 (2014), 3687–3694 | DOI | MR | Zbl

[2] F. Ambro, “The moduli $b$-divisor of an lc-trivial fibration”, Compos. Math., 141:2 (2005), 385–403 | DOI | MR | Zbl

[3] F. Ambro, The Adjunction Conjecture and its applications, arXiv: math/9903060v3

[4] C. Birkar, “Singularities on the base of a Fano type fibration”, J. Reine Angew. Math., 2016:715 (2016), 125–142 | DOI | MR | Zbl

[5] C. Birkar, Singularities of linear systems and boundedness of Fano varieties, arXiv: 1609.05543

[6] C. Birkar, Log Calabi–Yau fibrations, arXiv: 1811.10709v2

[7] C. Birkar, Generalised pairs in birational geometry https://www.dpmms.cam.ac.uk/~cb496/2020-gen-pairs-2.pdf

[8] A. A. Borisov, L. A. Borisov, “Singular toric Fano varieties”, Russian Acad. Sci. Sb. Math., 75:1 (1993), 277–283 | DOI | MR | Zbl

[9] C. Birkar, P. Cascini, C. D. Hacon, J. McKernan, “Existence of minimal models for varieties of log general type”, J. Amer. Math. Soc., 23:2 (2010), 405–468 | DOI | MR | Zbl

[10] C. Birkar, De-Qi Zhang, “Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs”, Publ. Math. Inst. Hautes Études Sci., 123 (2016), 283–331 | DOI | MR | Zbl

[11] D. A. Cox, J. B. Little, H. K. Schenck, Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011, xxiv+841 pp. | DOI | MR | Zbl

[12] S. Filipazzi, On a generalized canonical bundle formula and generalized adjunction, arXiv: 1807.04847v3

[13] W. Fulton, Introduction to toric varieties, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993, xii+157 pp. | DOI | MR | Zbl

[14] Y. Kawamata, “Subadjunction of log canonical divisors for a subvariety of codimension 2”, Birational algebraic geometry, A conference on algebraic geometry in memory of Wei-Liang Chow (1911–1995) (Baltimore, MD, 1996), Contemp. Math., 207, Amer. Math. Soc., Providence, RI, 1997, 79–88 | DOI | MR | Zbl

[15] Y. Kawamata, “Subadjunction of log canonical divisors. II”, Amer. J. Math., 120:5 (1998), 893–899 | DOI | MR | Zbl

[16] J. Kollár, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, transl. from the 1998 Japan. original, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp. | DOI | MR | Zbl

[17] K. Matsuki, Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002, xxiv+478 pp. | DOI | MR | Zbl

[18] S. Mori, Yu. Prokhorov, “On $\mathbb Q$-conic bundles”, Publ. Res. Inst. Math. Sci., 44:2 (2008), 315–369 | DOI | MR | Zbl

[19] S. Mori, Yu. G. Prokhorov, “Multiple fibers of del Pezzo fibrations”, Mnogomernaya algebraicheskaya geometriya, Sbornik statei. Posvyaschaetsya pamyati chlena-korrespondenta RAN Vasiliya Alekseevicha Iskovskikh, Tr. MIAN, 264, MAIK «Nauka/Interperiodika», M., 2009, 137–151 | MR | Zbl

[20] T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Transl. from the Japan., Ergeb. Math. Grenzgeb. (3), 15, Springer-Verlag, Berlin, 1988, viii+212 pp. | MR | Zbl