Singularities on toric fibrations
Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 288-304

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate singularities on toric fibrations. In this context we study a conjecture of Shokurov (a special case of which is due to M\textsuperscript{c}Kernan) which roughly says that if $(X,B)\to Z$ is an $\varepsilon$-lc Fano-type log Calabi-Yau fibration, then the singularities of the log base $(Z,B_Z+M_Z)$ are bounded in terms of $\varepsilon$ and $\dim X$ where $B_Z$ and $M_Z$ are the discriminant and moduli divisors of the canonical bundle formula. A corollary of our main result says that if $X\to Z$ is a toric Fano fibration with $X$ being $\varepsilon$-lc, then the multiplicities of the fibres over codimension one points are bounded depending only on $\varepsilon$ and $\dim X$. Bibliography: 20 titles.
Keywords: toric varieties, Shokurov's conjecture, singularities of pairs.
@article{SM_2021_212_3_a2,
     author = {C. Birkar and Y. Chen},
     title = {Singularities on toric fibrations},
     journal = {Sbornik. Mathematics},
     pages = {288--304},
     publisher = {mathdoc},
     volume = {212},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a2/}
}
TY  - JOUR
AU  - C. Birkar
AU  - Y. Chen
TI  - Singularities on toric fibrations
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 288
EP  - 304
VL  - 212
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_3_a2/
LA  - en
ID  - SM_2021_212_3_a2
ER  - 
%0 Journal Article
%A C. Birkar
%A Y. Chen
%T Singularities on toric fibrations
%J Sbornik. Mathematics
%D 2021
%P 288-304
%V 212
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_3_a2/
%G en
%F SM_2021_212_3_a2
C. Birkar; Y. Chen. Singularities on toric fibrations. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 288-304. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a2/