On a~conjecture of Teissier: the case of~log canonical thresholds
Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 433-448

Voir la notice de l'article provenant de la source Math-Net.Ru

For a smooth germ of an algebraic variety $(X,0)$ and a hypersurface $(f=0)$ in $X$, with an isolated singularity at $0$, Teissier conjectured a lower bound for the Arnold exponent of $f$ in terms of the Arnold exponent of a hyperplane section $f|_H$ and the invariant $\theta_0(f)$ of the hypersurface. By building on an approach due to Loeser, we prove the conjecture in the case of log canonical thresholds. Bibliography: 21 titles.
Keywords: Arnold exponent, multiplier ideals, log canonical thresholds.
@article{SM_2021_212_3_a11,
     author = {E. Elduque and M. Musta\c{t}\u{a}},
     title = {On a~conjecture of {Teissier:} the case of~log canonical thresholds},
     journal = {Sbornik. Mathematics},
     pages = {433--448},
     publisher = {mathdoc},
     volume = {212},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a11/}
}
TY  - JOUR
AU  - E. Elduque
AU  - M. Mustaţă
TI  - On a~conjecture of Teissier: the case of~log canonical thresholds
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 433
EP  - 448
VL  - 212
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_3_a11/
LA  - en
ID  - SM_2021_212_3_a11
ER  - 
%0 Journal Article
%A E. Elduque
%A M. Mustaţă
%T On a~conjecture of Teissier: the case of~log canonical thresholds
%J Sbornik. Mathematics
%D 2021
%P 433-448
%V 212
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_3_a11/
%G en
%F SM_2021_212_3_a11
E. Elduque; M. Mustaţă. On a~conjecture of Teissier: the case of~log canonical thresholds. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 433-448. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a11/