On a~conjecture of Teissier: the case of~log canonical thresholds
Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 433-448
Voir la notice de l'article provenant de la source Math-Net.Ru
For a smooth germ of an algebraic variety $(X,0)$ and a hypersurface $(f=0)$ in $X$, with an isolated singularity at $0$, Teissier conjectured a lower bound for the Arnold exponent of $f$ in terms of the Arnold exponent of a hyperplane section $f|_H$ and the invariant $\theta_0(f)$ of the hypersurface.
By building on an approach due to Loeser, we prove the conjecture in the case of log canonical thresholds.
Bibliography: 21 titles.
Keywords:
Arnold exponent, multiplier ideals, log canonical thresholds.
@article{SM_2021_212_3_a11,
author = {E. Elduque and M. Musta\c{t}\u{a}},
title = {On a~conjecture of {Teissier:} the case of~log canonical thresholds},
journal = {Sbornik. Mathematics},
pages = {433--448},
publisher = {mathdoc},
volume = {212},
number = {3},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a11/}
}
E. Elduque; M. Mustaţă. On a~conjecture of Teissier: the case of~log canonical thresholds. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 433-448. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a11/