Towards finite generation of higher rational rank valuations
Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 416-432 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a finite generation conjecture for the valuation which computes the stability threshold of a log Fano pair. We also initiate a degeneration strategy for attacking the conjecture. Bibliography: 17 titles.
Keywords: $\mathrm{K}$-stability, $\mathbb Q$-complement, degeneration.
Mots-clés : log Fano pair
@article{SM_2021_212_3_a10,
     author = {C. Xu},
     title = {Towards finite generation of higher rational rank valuations},
     journal = {Sbornik. Mathematics},
     pages = {416--432},
     year = {2021},
     volume = {212},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a10/}
}
TY  - JOUR
AU  - C. Xu
TI  - Towards finite generation of higher rational rank valuations
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 416
EP  - 432
VL  - 212
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_3_a10/
LA  - en
ID  - SM_2021_212_3_a10
ER  - 
%0 Journal Article
%A C. Xu
%T Towards finite generation of higher rational rank valuations
%J Sbornik. Mathematics
%D 2021
%P 416-432
%V 212
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2021_212_3_a10/
%G en
%F SM_2021_212_3_a10
C. Xu. Towards finite generation of higher rational rank valuations. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 416-432. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a10/

[1] $K$-stability and related topics problems. 3. Special degeneration, AIM Problem Lists, 2020 http://aimpl.org/kstability/3/

[2] H. Ahmadinezhad, Ziquan Zhuang, $K$-stability of Fano varieties via admissible flags, arXiv: 2003.13788

[3] C. Birkar, P. Cascini, C. D. Hacon, J. McKernan, “Existence of minimal models for varieties of log general type”, J. Amer. Math. Soc., 23:2 (2010), 405–468 | DOI | MR | Zbl

[4] H. Blum, Yuchen Liu, Chenyang Xu, Openness of K-semistability for Fano varieties, arXiv: 1907.02408

[5] H. Blum, Yuchen Liu, Chuyu Zhou, Optimal destabilization of K-unstable Fano varieties via stability thresholds, arXiv: 1907.05399

[6] H. Blum, Chenyang Xu, “Uniqueness of K-polystable degenerations of Fano varieties”, Ann. of Math. (2), 190:2 (2019), 609–656 | DOI | MR | Zbl

[7] S. D. Cutkosky, “On finite and nonfinite generation of associated graded rings of Abhyankar valuations”, Singularities, algebraic geometry, commutative algebra, and related topics, Springer, Cham, 2018, 481–490 | DOI | MR | Zbl

[8] T. de Fernex, J. Kollár, Chenyang Xu, “The dual complex of singularities”, Higher dimensional algebraic geometry – in honour of Professor Yujiro Kawamata's sixtieth birthday, Adv. Stud. Pure Math., 74, Math. Soc. Japan, Tokyo, 2017, 103–129 | DOI | MR | Zbl

[9] J. Kollár, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, transl. from the 1998 Japan. original, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp. | DOI | MR | Zbl

[10] J. Kollár, Singularities of the minimal model program, With the collaboration of S. Kovács, Cambridge Tracts in Math., 200, Cambridge Univ. Press, Cambridge, 2013, x+370 pp. | DOI | MR | Zbl

[11] J. Kollár, Families of varieties of general type, Book on moduli of surfaces – ongoing project, 2018 https://web.math.princeton.edu/~kollar/book/modbook20170720-hyper.pdf

[12] R. Lazarsfeld, Positivity in algebraic geometry, v. II, Ergeb. Math. Grenzgeb. (3), 49, Springer-Verlag, Berlin, 2004, xviii+385 pp. | DOI | MR | Zbl

[13] Chi Li, “Minimizing normalized volumes of valuations”, Math. Z., 289:1-2 (2018), 491–513 | DOI | MR | Zbl

[14] Chi Li, Chenyang Xu, “Stability of valuations: higher rational rank”, Peking Math. J., 1:1 (2018), 1–79 | DOI | MR | Zbl

[15] Chi Li, Chenyang Xu, “Stability of valuations and Kollár components”, J. Eur. Math. Soc. (JEMS), 22:8 (2020), 2573–2627 | DOI | MR | Zbl

[16] B. Teissier, “Overweight deformations of affine toric varieties and local uniformization”, Valuation theory in interaction, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2014, 474–565 | DOI | MR | Zbl

[17] Chenyang Xu, “A minimizing valuation is quasi-monomial”, Ann. of Math. (2), 191:3 (2020), 1003–1030 | DOI | MR | Zbl