Mots-clés : torsion points, Galois modules.
@article{SM_2021_212_3_a1,
author = {B. M. Bekker and Yu. G. Zarhin},
title = {Versal families of elliptic curves with rational 3-torsion},
journal = {Sbornik. Mathematics},
pages = {274--287},
year = {2021},
volume = {212},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a1/}
}
B. M. Bekker; Yu. G. Zarhin. Versal families of elliptic curves with rational 3-torsion. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 274-287. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a1/
[1] B. M. Bekker, Yu. G. Zarhin, “Division by 2 of rational points on elliptic curves”, St. Petersburg Math. J., 29:4 (2018), 683–713 | DOI | MR | Zbl
[2] B. M. Bekker, Yu. G. Zarhin, “Families of elliptic curves with rational torsion points of even order”, Algebraic curves and their applications, Contemp. Math., 724, Amer. Math. Soc., Providence, RI, 2019, 1–32 | DOI | MR | Zbl
[3] B. M. Bekker, Yu. G. Zarhin, “Torsion points of order $ 2g\,{+}\,1 $ on odd degree hyperelliptic curves of genus $ g $”, Trans. Amer. Math. Soc., 373:11 (2020), 8059–8094 | DOI | MR | Zbl
[4] D. S. Kubert, “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc. (3), 33:2 (1976), 193–237 | DOI | MR | Zbl
[5] K. Rubin, A. Silverberg, “Families of elliptic curves with constant $\operatorname{mod} p$ representations”, Elliptic curves, modular forms, Fermat's last theorem (Hong Kong, 1993), Ser. Number Theory, I, Intl. Press, Cambridge, MA, 1995, 148–161 | MR | Zbl
[6] K. Rubin, A. Silverberg, “Mod 6 representations of elliptic curves”, Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996), Proc. Sympos. Pure Math., 66, Part 1, Amer. Math. Soc., Providence, RI, 1999, 213–220 | MR | Zbl
[7] K. Rubin, A. Silverberg, “Mod $2$ representations of elliptic curves”, Proc. Amer. Math. Soc., 129:1 (2001), 53–57 | DOI | MR | Zbl
[8] A. Silverberg, “Explicit families of elliptic curves with prescribed $\operatorname{mod} N$ representations”, Modular forms and Fermat's last theorem (Boston, MA, 1995), Springer, New York, 1997, 447–461 | DOI | MR | Zbl
[9] J. H. Silverman, J. Tate, Rational points on elliptic curves, Undergrad. Texts Math., Springer-Verlag, New York, 1992, x+281 pp. | DOI | MR | Zbl
[10] A. Wiles, “Modular elliptic curves and Fermat's last theorem”, Ann. of Math. (2), 141:3 (1995), 443–551 | DOI | MR | Zbl