Versal families of elliptic curves with rational 3-torsion
Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 274-287

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary field of characteristic different from 2 and 3, we construct versal families of elliptic curves whose 3-torsion is either rational or isomorphic to $\mathbb Z/3\mathbb Z\oplus \mu_3$ as a Galois module. Bibliography: 10 titles.
Keywords: elliptic curves
Mots-clés : torsion points, Galois modules.
@article{SM_2021_212_3_a1,
     author = {B. M. Bekker and Yu. G. Zarhin},
     title = {Versal families of elliptic curves with rational 3-torsion},
     journal = {Sbornik. Mathematics},
     pages = {274--287},
     publisher = {mathdoc},
     volume = {212},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a1/}
}
TY  - JOUR
AU  - B. M. Bekker
AU  - Yu. G. Zarhin
TI  - Versal families of elliptic curves with rational 3-torsion
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 274
EP  - 287
VL  - 212
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_3_a1/
LA  - en
ID  - SM_2021_212_3_a1
ER  - 
%0 Journal Article
%A B. M. Bekker
%A Yu. G. Zarhin
%T Versal families of elliptic curves with rational 3-torsion
%J Sbornik. Mathematics
%D 2021
%P 274-287
%V 212
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_3_a1/
%G en
%F SM_2021_212_3_a1
B. M. Bekker; Yu. G. Zarhin. Versal families of elliptic curves with rational 3-torsion. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 274-287. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a1/