Versal families of elliptic curves with rational 3-torsion
Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 274-287
Voir la notice de l'article provenant de la source Math-Net.Ru
For an arbitrary field of characteristic different from 2 and 3, we construct versal families of elliptic curves whose 3-torsion is either rational or isomorphic to $\mathbb Z/3\mathbb Z\oplus \mu_3$ as a Galois module.
Bibliography: 10 titles.
Keywords:
elliptic curves
Mots-clés : torsion points, Galois modules.
Mots-clés : torsion points, Galois modules.
@article{SM_2021_212_3_a1,
author = {B. M. Bekker and Yu. G. Zarhin},
title = {Versal families of elliptic curves with rational 3-torsion},
journal = {Sbornik. Mathematics},
pages = {274--287},
publisher = {mathdoc},
volume = {212},
number = {3},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_3_a1/}
}
B. M. Bekker; Yu. G. Zarhin. Versal families of elliptic curves with rational 3-torsion. Sbornik. Mathematics, Tome 212 (2021) no. 3, pp. 274-287. http://geodesic.mathdoc.fr/item/SM_2021_212_3_a1/