Topological analysis of a~billiard bounded by confocal quadrics in a~potential field
Sbornik. Mathematics, Tome 212 (2021) no. 2, pp. 211-233
Voir la notice de l'article provenant de la source Math-Net.Ru
Consider a billiard in a plane domain bounded by confocal ellipses and hyperbolae. A Hooke potential acts on a point mass. This dynamical systems turns out to be completely Liouville integrable. A topological analysis of the Liouville foliation of isoenergy manifolds at all possible levels of the Hamiltonian is performed and the complete Fomenko-Zieschang invariants (marked molecules) of these manifolds are constructed.
Bibliography: 15 titles.
Keywords:
Hooke potential, integrable system
Mots-clés : Fomenko-Zieschang invariant, Liouville equivalence.
Mots-clés : Fomenko-Zieschang invariant, Liouville equivalence.
@article{SM_2021_212_2_a3,
author = {S. E. Pustovoitov},
title = {Topological analysis of a~billiard bounded by confocal quadrics in a~potential field},
journal = {Sbornik. Mathematics},
pages = {211--233},
publisher = {mathdoc},
volume = {212},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_2_a3/}
}
S. E. Pustovoitov. Topological analysis of a~billiard bounded by confocal quadrics in a~potential field. Sbornik. Mathematics, Tome 212 (2021) no. 2, pp. 211-233. http://geodesic.mathdoc.fr/item/SM_2021_212_2_a3/