Topological analysis of a~billiard bounded by confocal quadrics in a~potential field
Sbornik. Mathematics, Tome 212 (2021) no. 2, pp. 211-233

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a billiard in a plane domain bounded by confocal ellipses and hyperbolae. A Hooke potential acts on a point mass. This dynamical systems turns out to be completely Liouville integrable. A topological analysis of the Liouville foliation of isoenergy manifolds at all possible levels of the Hamiltonian is performed and the complete Fomenko-Zieschang invariants (marked molecules) of these manifolds are constructed. Bibliography: 15 titles.
Keywords: Hooke potential, integrable system
Mots-clés : Fomenko-Zieschang invariant, Liouville equivalence.
@article{SM_2021_212_2_a3,
     author = {S. E. Pustovoitov},
     title = {Topological analysis of a~billiard bounded by confocal quadrics in a~potential field},
     journal = {Sbornik. Mathematics},
     pages = {211--233},
     publisher = {mathdoc},
     volume = {212},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_2_a3/}
}
TY  - JOUR
AU  - S. E. Pustovoitov
TI  - Topological analysis of a~billiard bounded by confocal quadrics in a~potential field
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 211
EP  - 233
VL  - 212
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_2_a3/
LA  - en
ID  - SM_2021_212_2_a3
ER  - 
%0 Journal Article
%A S. E. Pustovoitov
%T Topological analysis of a~billiard bounded by confocal quadrics in a~potential field
%J Sbornik. Mathematics
%D 2021
%P 211-233
%V 212
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_2_a3/
%G en
%F SM_2021_212_2_a3
S. E. Pustovoitov. Topological analysis of a~billiard bounded by confocal quadrics in a~potential field. Sbornik. Mathematics, Tome 212 (2021) no. 2, pp. 211-233. http://geodesic.mathdoc.fr/item/SM_2021_212_2_a3/