Topological analysis of a billiard bounded by confocal quadrics in a potential field
Sbornik. Mathematics, Tome 212 (2021) no. 2, pp. 211-233 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Consider a billiard in a plane domain bounded by confocal ellipses and hyperbolae. A Hooke potential acts on a point mass. This dynamical systems turns out to be completely Liouville integrable. A topological analysis of the Liouville foliation of isoenergy manifolds at all possible levels of the Hamiltonian is performed and the complete Fomenko-Zieschang invariants (marked molecules) of these manifolds are constructed. Bibliography: 15 titles.
Keywords: Hooke potential, integrable system
Mots-clés : Fomenko-Zieschang invariant, Liouville equivalence.
@article{SM_2021_212_2_a3,
     author = {S. E. Pustovoitov},
     title = {Topological analysis of a~billiard bounded by confocal quadrics in a~potential field},
     journal = {Sbornik. Mathematics},
     pages = {211--233},
     year = {2021},
     volume = {212},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_2_a3/}
}
TY  - JOUR
AU  - S. E. Pustovoitov
TI  - Topological analysis of a billiard bounded by confocal quadrics in a potential field
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 211
EP  - 233
VL  - 212
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_2_a3/
LA  - en
ID  - SM_2021_212_2_a3
ER  - 
%0 Journal Article
%A S. E. Pustovoitov
%T Topological analysis of a billiard bounded by confocal quadrics in a potential field
%J Sbornik. Mathematics
%D 2021
%P 211-233
%V 212
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2021_212_2_a3/
%G en
%F SM_2021_212_2_a3
S. E. Pustovoitov. Topological analysis of a billiard bounded by confocal quadrics in a potential field. Sbornik. Mathematics, Tome 212 (2021) no. 2, pp. 211-233. http://geodesic.mathdoc.fr/item/SM_2021_212_2_a3/

[1] A. T. Fomenko, H. Zieschang, “On the topology of the three-dimensional manifolds arising in Hamiltonian mechanics”, Soviet Math. Dokl., 35:2 (1987), 529–534 | MR | Zbl

[2] A. T. Fomenko, “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl

[3] A. T. Fomenko, “A bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A new topological invariant of higher-dimensional integrable systems”, Math. USSR-Izv., 39:1 (1992), 731–759 | DOI | MR | Zbl

[4] A. T. Fomenko, “A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds”, Funct. Anal. Appl., 25:4 (1991), 262–272 | DOI | MR | Zbl

[5] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353 | DOI | DOI | MR | Zbl

[6] A. T. Fomenko, A. Yu. Konyaev, “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topology Appl., 159:7 (2012), 1964–1975 | DOI | MR | Zbl

[7] V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733 | DOI | DOI | MR | Zbl

[8] V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83:6 (2019), 1137–1173 | DOI | DOI | MR | Zbl

[9] V. I. Dragovich, “Integrable perturbations of a Birkhoff billiard inside an ellipse”, J. Appl. Math. Mech., 62:1 (1998), 159–162 | DOI | MR | Zbl

[10] S. E. Pustovoitov, “Topologicheskii analiz billiarda v ellipticheskom koltse v potentsialnom pole”, Fundament. i prikl. matem., 22:6 (2019), 201–225 | MR

[11] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl

[12] V. V. Fokicheva, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507 | DOI | DOI | MR | Zbl

[13] V. V. Kozlov, “Some integrable extensions of Jacobi's problem of geodesics on an ellipsoid”, J. Appl. Math. Mech., 59:1 (1995), 1–7 | DOI | MR | Zbl

[14] M. P. Kharlamov, “Topologicheskii analiz i bulevy funktsii: I. Metody i prilozheniya k klassicheskim sistemam”, Nelineinaya dinam., 6:4 (2010), 769–805