Polyhomomorphisms of locally compact groups
Sbornik. Mathematics, Tome 212 (2021) no. 2, pp. 185-210

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ and $H$ be locally compact groups with fixed two-sided invariant Haar measures. A polyhomomorphism $G\rightarrowtail H$ is a closed subgroup $R\subset G\times H$ with fixed Haar measure, whose marginals on $G$ and $H$ are dominated by the Haar measures on $G$ and $H$. A polyhomomorphism can be regarded as a multi-valued map sending points to sets equipped with ‘uniform’ measures. For two polyhomomorphisms $G\rightarrowtail H$ and $H\rightarrowtail K$ there is a well-defined product $G\rightarrowtail K$. The set of polyhomomorphisms $G\rightarrowtail H$ is a metrizable compact space with respect to the Chabauty-Bourbaki topology and the product is separately continuous. A polyhomomorphism $G\rightarrowtail H$ determines a canonical operator $L^2(H)\to L^2(G)$, which is a partial isometry up to a scalar factor. For example, we consider locally compact linear spaces over finite fields and examine the closures of groups of linear operators in semigroups of polyhomomorphisms. Bibliography: 40 titles.
Keywords: Haar measure, partial isometries, Chabauty-Bourbaki topology.
Mots-clés : polymorphism, multiplicative relation
@article{SM_2021_212_2_a2,
     author = {Yu. A. Neretin},
     title = {Polyhomomorphisms of locally compact groups},
     journal = {Sbornik. Mathematics},
     pages = {185--210},
     publisher = {mathdoc},
     volume = {212},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_2_a2/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Polyhomomorphisms of locally compact groups
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 185
EP  - 210
VL  - 212
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_2_a2/
LA  - en
ID  - SM_2021_212_2_a2
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Polyhomomorphisms of locally compact groups
%J Sbornik. Mathematics
%D 2021
%P 185-210
%V 212
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_2_a2/
%G en
%F SM_2021_212_2_a2
Yu. A. Neretin. Polyhomomorphisms of locally compact groups. Sbornik. Mathematics, Tome 212 (2021) no. 2, pp. 185-210. http://geodesic.mathdoc.fr/item/SM_2021_212_2_a2/