Mots-clés : absorption, extinction of a solution.
@article{SM_2021_212_2_a1,
author = {S. P. Degtyarev},
title = {On the phenomenon of the support shrinking of a~solution with a~time delay and on the extinction of the solution},
journal = {Sbornik. Mathematics},
pages = {170--184},
year = {2021},
volume = {212},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_2_a1/}
}
TY - JOUR AU - S. P. Degtyarev TI - On the phenomenon of the support shrinking of a solution with a time delay and on the extinction of the solution JO - Sbornik. Mathematics PY - 2021 SP - 170 EP - 184 VL - 212 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_2021_212_2_a1/ LA - en ID - SM_2021_212_2_a1 ER -
S. P. Degtyarev. On the phenomenon of the support shrinking of a solution with a time delay and on the extinction of the solution. Sbornik. Mathematics, Tome 212 (2021) no. 2, pp. 170-184. http://geodesic.mathdoc.fr/item/SM_2021_212_2_a1/
[1] S. P. Degtyarev, “Conditions for instantaneous support shrinking and sharp estimates for the support of the solution of the Cauchy problem for a doubly non-linear parabolic equation with absorption”, Sb. Math., 199:4 (2008), 511–538 | DOI | DOI | MR | Zbl
[2] L. C. Evans, B. F. Knerr, “Instantaneous shrinking of the support of nonnegative solutions to certain nonlinear parabolic equations and variational inequalities”, Illinois J. Math., 23:1 (1979), 153–166 | DOI | MR | Zbl
[3] M. Ughi, “Initial behavior of the free boundary for a porous media equation with strong absorption”, Adv. Math. Sci. Appl., 11:1 (2001), 333–345 | MR | Zbl
[4] A. S. Kalashnikov, “On the dependence of properties of solutions of parabolic equations in unbounded domains on the behavior of the coefficients at infinity”, Math. USSR-Sb., 53:2 (1986), 399–410 | DOI | MR | Zbl
[5] A. S. Kalashnikov, “On the behavior of solutions of the Cauchy problem for parabolic systems with nonlinear dissipation near the initial hyperplane”, J. Math. Sci. (N.Y.), 69:2 (1994), 1004–1010 | DOI | MR | Zbl
[6] U. G. Abdullaev, “Instantaneous shrinking of the support of solutions to a nonlinear degenerate parabolic equation”, Math. Notes, 63:3 (1998), 285–292 | DOI | DOI | MR | Zbl
[7] U. G. Abdullaev, “Exact local estimates for the supports of solutions in problems for non-linear parabolic equations”, Sb. Math., 186:8 (1995), 1085–1106 | DOI | MR | Zbl
[8] R. Kersner, A. Shishkov, “Instantaneous shrinking of the support of energy solutions”, J. Math. Anal. Appl., 198:3 (1996), 729–750 | DOI | MR | Zbl
[9] A. E. Shishkov, “Dead cores and instantaneous compactification of the supports of energy solutions of quasilinear parabolic equations of arbitrary order”, Sb. Math., 190:12 (1999), 1843–1869 | DOI | DOI | MR | Zbl
[10] A. E. Shishkov, A. G. Shchelkov, “Dynamics of the supports of energy solutions of mixed problems for quasi-linear parabolic equations of arbitrary order”, Izv. Math., 62:3 (1998), 601–626 | DOI | DOI | MR | Zbl
[11] S. N. Antontsev, J. I. Díaz, S. Shmarev, Energy methods for the free boundary problems. Applications to nonlinear PDEs and fluid mechanics, Progr. Nonlinear Differential Equations Appl., 48, Birkhäuser Boston, Inc., Boston, MA, 2002, xii+329 pp. | DOI | MR | Zbl
[12] A. E. Shishkov, “Instantaneous shrinking phenomenon for solutions of higher-dimensional nonlinear diffusion-convection equations”, Methods Funct. Anal. Topology, 5:3 (1999), 54–76 | MR | Zbl
[13] A. E. Shishkov, “Compactification of supports of energy weak solutions to quasilinear parabolic equations of nonstationary filtration type with strong convection”, J. Math. Sci. (N.Y.), 97:3 (1999), 4066–4084 | DOI | MR | Zbl
[14] K. Ishige, “On the existence of solutions of the Cauchy problem for a doubly nonlinear parabolic equation”, SIAM J. Math.Anal., 27:5 (1996), 1235–1260 | DOI | MR | Zbl
[15] Hui Jun Fan, “Cauchy problem of some doubly degenerate parabolic equations with initial datum a measure”, Acta Math. Sin. (Engl. Ser.), 20:4 (2004), 663–682 | DOI | MR | Zbl
[16] M. Tsutsumi, “On solutions of some doubly nonlinear degenerate parabolic equations with absorption”, J. Math. Anal. Appl., 132:1 (1988), 187–212 | DOI | MR | Zbl
[17] D. Andreucci, A. F. Tedeev, “Universal bounds at the blow-up time for nonlinear parabolic equations”, Adv. Differential Equations, 10:1 (2005), 89–120 | MR | Zbl
[18] D. Andreucci, A. F. Tedeev, “Finite speed of propagation for the thin-film equation and other higher-order parabolic equations with general nonlinearity”, Interfaces Free Bound., 3:3 (2001), 233–264 | DOI | MR | Zbl
[19] D. Andreucci, A. F. Tedeev, “A Fujita type result for a degenerate Neumann problem in domains with noncompact boundary”, J. Math. Anal. Appl., 231:2 (1999), 543–567 | DOI | MR | Zbl
[20] F. Bernis, “Finite speed of propagation and asymptotic rates for some nonlinear higher order parabolic equations with absorption”, Proc. Roy. Soc. Edinburgh Sect. A, 104:1-2 (1986), 1–19 | DOI | MR | Zbl
[21] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968, xi+648 pp. | MR | MR | Zbl | Zbl