On the phenomenon of the support shrinking of a solution with a time delay and on the extinction of the solution
Sbornik. Mathematics, Tome 212 (2021) no. 2, pp. 170-184 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The phenomenon of support shrinking with a time delay for the solution of a doubly nonlinear degenerate parabolic equation is studied in the case of slow diffusion and strong absorption. For a nonnegative solution, a sufficient condition for support shrinking beginning with some moment of time is deduced in terms of the local behaviour of the mass of the initial datum. It is also proved that the solution vanishes identically in finite time. Bibliography: 21 titles.
Keywords: degenerate parabolic equation, support shrinking
Mots-clés : absorption, extinction of a solution.
@article{SM_2021_212_2_a1,
     author = {S. P. Degtyarev},
     title = {On the phenomenon of the support shrinking of a~solution with a~time delay and on the extinction of the solution},
     journal = {Sbornik. Mathematics},
     pages = {170--184},
     year = {2021},
     volume = {212},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_2_a1/}
}
TY  - JOUR
AU  - S. P. Degtyarev
TI  - On the phenomenon of the support shrinking of a solution with a time delay and on the extinction of the solution
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 170
EP  - 184
VL  - 212
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_2_a1/
LA  - en
ID  - SM_2021_212_2_a1
ER  - 
%0 Journal Article
%A S. P. Degtyarev
%T On the phenomenon of the support shrinking of a solution with a time delay and on the extinction of the solution
%J Sbornik. Mathematics
%D 2021
%P 170-184
%V 212
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2021_212_2_a1/
%G en
%F SM_2021_212_2_a1
S. P. Degtyarev. On the phenomenon of the support shrinking of a solution with a time delay and on the extinction of the solution. Sbornik. Mathematics, Tome 212 (2021) no. 2, pp. 170-184. http://geodesic.mathdoc.fr/item/SM_2021_212_2_a1/

[1] S. P. Degtyarev, “Conditions for instantaneous support shrinking and sharp estimates for the support of the solution of the Cauchy problem for a doubly non-linear parabolic equation with absorption”, Sb. Math., 199:4 (2008), 511–538 | DOI | DOI | MR | Zbl

[2] L. C. Evans, B. F. Knerr, “Instantaneous shrinking of the support of nonnegative solutions to certain nonlinear parabolic equations and variational inequalities”, Illinois J. Math., 23:1 (1979), 153–166 | DOI | MR | Zbl

[3] M. Ughi, “Initial behavior of the free boundary for a porous media equation with strong absorption”, Adv. Math. Sci. Appl., 11:1 (2001), 333–345 | MR | Zbl

[4] A. S. Kalashnikov, “On the dependence of properties of solutions of parabolic equations in unbounded domains on the behavior of the coefficients at infinity”, Math. USSR-Sb., 53:2 (1986), 399–410 | DOI | MR | Zbl

[5] A. S. Kalashnikov, “On the behavior of solutions of the Cauchy problem for parabolic systems with nonlinear dissipation near the initial hyperplane”, J. Math. Sci. (N.Y.), 69:2 (1994), 1004–1010 | DOI | MR | Zbl

[6] U. G. Abdullaev, “Instantaneous shrinking of the support of solutions to a nonlinear degenerate parabolic equation”, Math. Notes, 63:3 (1998), 285–292 | DOI | DOI | MR | Zbl

[7] U. G. Abdullaev, “Exact local estimates for the supports of solutions in problems for non-linear parabolic equations”, Sb. Math., 186:8 (1995), 1085–1106 | DOI | MR | Zbl

[8] R. Kersner, A. Shishkov, “Instantaneous shrinking of the support of energy solutions”, J. Math. Anal. Appl., 198:3 (1996), 729–750 | DOI | MR | Zbl

[9] A. E. Shishkov, “Dead cores and instantaneous compactification of the supports of energy solutions of quasilinear parabolic equations of arbitrary order”, Sb. Math., 190:12 (1999), 1843–1869 | DOI | DOI | MR | Zbl

[10] A. E. Shishkov, A. G. Shchelkov, “Dynamics of the supports of energy solutions of mixed problems for quasi-linear parabolic equations of arbitrary order”, Izv. Math., 62:3 (1998), 601–626 | DOI | DOI | MR | Zbl

[11] S. N. Antontsev, J. I. Díaz, S. Shmarev, Energy methods for the free boundary problems. Applications to nonlinear PDEs and fluid mechanics, Progr. Nonlinear Differential Equations Appl., 48, Birkhäuser Boston, Inc., Boston, MA, 2002, xii+329 pp. | DOI | MR | Zbl

[12] A. E. Shishkov, “Instantaneous shrinking phenomenon for solutions of higher-dimensional nonlinear diffusion-convection equations”, Methods Funct. Anal. Topology, 5:3 (1999), 54–76 | MR | Zbl

[13] A. E. Shishkov, “Compactification of supports of energy weak solutions to quasilinear parabolic equations of nonstationary filtration type with strong convection”, J. Math. Sci. (N.Y.), 97:3 (1999), 4066–4084 | DOI | MR | Zbl

[14] K. Ishige, “On the existence of solutions of the Cauchy problem for a doubly nonlinear parabolic equation”, SIAM J. Math.Anal., 27:5 (1996), 1235–1260 | DOI | MR | Zbl

[15] Hui Jun Fan, “Cauchy problem of some doubly degenerate parabolic equations with initial datum a measure”, Acta Math. Sin. (Engl. Ser.), 20:4 (2004), 663–682 | DOI | MR | Zbl

[16] M. Tsutsumi, “On solutions of some doubly nonlinear degenerate parabolic equations with absorption”, J. Math. Anal. Appl., 132:1 (1988), 187–212 | DOI | MR | Zbl

[17] D. Andreucci, A. F. Tedeev, “Universal bounds at the blow-up time for nonlinear parabolic equations”, Adv. Differential Equations, 10:1 (2005), 89–120 | MR | Zbl

[18] D. Andreucci, A. F. Tedeev, “Finite speed of propagation for the thin-film equation and other higher-order parabolic equations with general nonlinearity”, Interfaces Free Bound., 3:3 (2001), 233–264 | DOI | MR | Zbl

[19] D. Andreucci, A. F. Tedeev, “A Fujita type result for a degenerate Neumann problem in domains with noncompact boundary”, J. Math. Anal. Appl., 231:2 (1999), 543–567 | DOI | MR | Zbl

[20] F. Bernis, “Finite speed of propagation and asymptotic rates for some nonlinear higher order parabolic equations with absorption”, Proc. Roy. Soc. Edinburgh Sect. A, 104:1-2 (1986), 1–19 | DOI | MR | Zbl

[21] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968, xi+648 pp. | MR | MR | Zbl | Zbl