@article{SM_2021_212_1_a4,
author = {S. E. Pastukhova},
title = {Approximation of resolvents in homogenization of fourth-order elliptic operators},
journal = {Sbornik. Mathematics},
pages = {111--134},
year = {2021},
volume = {212},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_1_a4/}
}
S. E. Pastukhova. Approximation of resolvents in homogenization of fourth-order elliptic operators. Sbornik. Mathematics, Tome 212 (2021) no. 1, pp. 111-134. http://geodesic.mathdoc.fr/item/SM_2021_212_1_a4/
[1] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North Holland Publishing Co., Amsterdam–New York, 1978, xxiv+700 pp. | MR | Zbl
[2] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin–New York, 1980, ix+398 pp. | DOI | MR | MR | Zbl
[3] N. Bakhvalov, G. Panasenko, Homogenisation: averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989, xxxvi+366 pp. | DOI | MR | MR | Zbl | Zbl
[4] V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994, xi+570 pp. | DOI | MR | MR | Zbl | Zbl
[5] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Hà Tiên Ngoan, “Averaging and $G$-convergence of differential operators”, Russian Math. Surveys, 34:5 (1979), 69–147 | DOI | MR | Zbl
[6] S. E. Pastukhova, “Operator error estimates for homogenization of fourth order elliptic equations”, St. Petersburg Math. J., 28:2 (2017), 273–289 | DOI | MR | Zbl
[7] M. Sh. Birman, T. A. Suslina, “Second order periodic differential operators. Threshold properties and homogenization”, St. Petersburg Math. J., 15:5 (2004), 639–714 | DOI | MR | Zbl
[8] V. V. Zhikov, “On operator estimates in homogenization theory”, Dokl. Math., 72:1 (2005), 534–538 | MR | Zbl
[9] V. V. Zhikov, S. E. Pastukhova, “Operator estimates in homogenization theory”, Russian Math. Surveys, 71:3 (2016), 417–511 | DOI | DOI | MR | Zbl
[10] V. V. Zhikov, S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl
[11] S. E. Pastukhova, “Estimates in homogenization of higher-order elliptic operators”, Appl. Anal., 95:7 (2016), 1449–1466 | DOI | MR | Zbl
[12] N. Veniaminov, “Homogenization of periodic differential operators of high order”, St. Petersburg Math. J., 22:5 (2011), 751–775 | DOI | MR | Zbl
[13] A. A. Kukushkin, T. A. Suslina, “Homogenization of high order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 28:1 (2017), 65–108 | DOI | MR | Zbl
[14] V. V. Zhikov, “Spectral method in homogenization theory”, Proc. Steklov Inst. Math., 250 (2005), 85–94 | MR | Zbl
[15] M. Sh. Birman, T. A. Suslina, “Homogenization with corrector term for periodic elliptic differential operators”, St. Petersburg Math. J., 17:6 (2006), 897–973 | DOI | MR | Zbl
[16] S. E. Pastukhova, “Approximations of the resolvent for a non-self-adjoint diffusion operator with rapidly oscillating coefficients”, Math. Notes, 94:1 (2013), 127–145 | DOI | DOI | MR | Zbl
[17] N. N. Senik, “On homogenization for non-self-adjoint locally periodic elliptic operators”, Funct. Anal. Appl., 51:2 (2017), 152–156 | DOI | DOI | MR | Zbl
[18] N. N. Senik, “Homogenization for non-self-adjoint periodic elliptic operators on an infinite cylinder”, SIAM J. Math. Anal., 49:2 (2017), 874–898 | DOI | MR | Zbl
[19] S. E. Pastukhova, “On resolvent approximations of elliptic differential operators with locally periodic coefficients”, Lobachevskii J. Math., 41:5 (2020), 818–838 | DOI | MR | Zbl
[20] S. E. Pastukhova, “$L^2$-estimates for homogenization of elliptic operators”, J. Math. Sci. (N.Y.), 244:4 (2020), 671–685 | DOI | MR | Zbl
[21] S. E. Pastukhova, “$L^2$-approksimatsii rezolventy ellipticheskogo operatora v perforirovannom prostranstve”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 66, no. 2, RUDN, M., 2020, 314–334 | DOI
[22] S. E. Pastukhova, On resolvent approximations of elleptic differential operators with periodic coefficients, 2020, arXiv: 2001.01701
[23] S. E. Pastukhova, “Homogenization estimates for singularly perturbed operators”, J. Math. Sci. (N.Y.), 251:5 (2020), 724–747 | DOI | MR | Zbl
[24] S. E. Pastukhova, “$L^2$-approximation of resolvents in homogenization of higher order elliptic operators”, J. Math. Sci. (N.Y.), 251:6 (2020), 902–925 | DOI | MR | Zbl
[25] V. A. Slousch, T. A. Suslina, “Usrednenie ellipticheskogo operatora chetvertogo poryadka s periodicheskimi koeffitsientami pri uchete korrektorov”, Funkts. analiz i ego pril., 54:3 (2020), 94–99 | DOI | MR