Approximation of resolvents in homogenization of fourth-order elliptic operators
Sbornik. Mathematics, Tome 212 (2021) no. 1, pp. 111-134
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the homogenization of a fourth-order divergent elliptic operator $A_\varepsilon$ with rapidly oscillating $\varepsilon$-periodic coefficients, where $\varepsilon$ is a small parameter. The homogenized operator $A_0$ is of the same type and has constant coefficients. We apply Zhikov's shift method to obtain an estimate in the $(L^2\to L^2)$-operator norm of order $\varepsilon^2$ for the difference of the resolvents $(A_\varepsilon+1)^{-1}$ and $(A_0+1)^{-1}$.
Bibliography: 25 titles.
Keywords:
approximation of resolvents, operator estimate of the homogenization error, corrector, shift method, fourth-order elliptic operator.
@article{SM_2021_212_1_a4,
author = {S. E. Pastukhova},
title = {Approximation of resolvents in homogenization of fourth-order elliptic operators},
journal = {Sbornik. Mathematics},
pages = {111--134},
publisher = {mathdoc},
volume = {212},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_1_a4/}
}
S. E. Pastukhova. Approximation of resolvents in homogenization of fourth-order elliptic operators. Sbornik. Mathematics, Tome 212 (2021) no. 1, pp. 111-134. http://geodesic.mathdoc.fr/item/SM_2021_212_1_a4/