Approximation of resolvents in homogenization of fourth-order elliptic operators
Sbornik. Mathematics, Tome 212 (2021) no. 1, pp. 111-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the homogenization of a fourth-order divergent elliptic operator $A_\varepsilon$ with rapidly oscillating $\varepsilon$-periodic coefficients, where $\varepsilon$ is a small parameter. The homogenized operator $A_0$ is of the same type and has constant coefficients. We apply Zhikov's shift method to obtain an estimate in the $(L^2\to L^2)$-operator norm of order $\varepsilon^2$ for the difference of the resolvents $(A_\varepsilon+1)^{-1}$ and $(A_0+1)^{-1}$. Bibliography: 25 titles.
Keywords: approximation of resolvents, operator estimate of the homogenization error, corrector, shift method, fourth-order elliptic operator.
@article{SM_2021_212_1_a4,
     author = {S. E. Pastukhova},
     title = {Approximation of resolvents in homogenization of fourth-order elliptic operators},
     journal = {Sbornik. Mathematics},
     pages = {111--134},
     year = {2021},
     volume = {212},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_1_a4/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - Approximation of resolvents in homogenization of fourth-order elliptic operators
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 111
EP  - 134
VL  - 212
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_1_a4/
LA  - en
ID  - SM_2021_212_1_a4
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T Approximation of resolvents in homogenization of fourth-order elliptic operators
%J Sbornik. Mathematics
%D 2021
%P 111-134
%V 212
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2021_212_1_a4/
%G en
%F SM_2021_212_1_a4
S. E. Pastukhova. Approximation of resolvents in homogenization of fourth-order elliptic operators. Sbornik. Mathematics, Tome 212 (2021) no. 1, pp. 111-134. http://geodesic.mathdoc.fr/item/SM_2021_212_1_a4/

[1] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North Holland Publishing Co., Amsterdam–New York, 1978, xxiv+700 pp. | MR | Zbl

[2] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin–New York, 1980, ix+398 pp. | DOI | MR | MR | Zbl

[3] N. Bakhvalov, G. Panasenko, Homogenisation: averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989, xxxvi+366 pp. | DOI | MR | MR | Zbl | Zbl

[4] V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994, xi+570 pp. | DOI | MR | MR | Zbl | Zbl

[5] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Hà Tiên Ngoan, “Averaging and $G$-convergence of differential operators”, Russian Math. Surveys, 34:5 (1979), 69–147 | DOI | MR | Zbl

[6] S. E. Pastukhova, “Operator error estimates for homogenization of fourth order elliptic equations”, St. Petersburg Math. J., 28:2 (2017), 273–289 | DOI | MR | Zbl

[7] M. Sh. Birman, T. A. Suslina, “Second order periodic differential operators. Threshold properties and homogenization”, St. Petersburg Math. J., 15:5 (2004), 639–714 | DOI | MR | Zbl

[8] V. V. Zhikov, “On operator estimates in homogenization theory”, Dokl. Math., 72:1 (2005), 534–538 | MR | Zbl

[9] V. V. Zhikov, S. E. Pastukhova, “Operator estimates in homogenization theory”, Russian Math. Surveys, 71:3 (2016), 417–511 | DOI | DOI | MR | Zbl

[10] V. V. Zhikov, S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[11] S. E. Pastukhova, “Estimates in homogenization of higher-order elliptic operators”, Appl. Anal., 95:7 (2016), 1449–1466 | DOI | MR | Zbl

[12] N. Veniaminov, “Homogenization of periodic differential operators of high order”, St. Petersburg Math. J., 22:5 (2011), 751–775 | DOI | MR | Zbl

[13] A. A. Kukushkin, T. A. Suslina, “Homogenization of high order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 28:1 (2017), 65–108 | DOI | MR | Zbl

[14] V. V. Zhikov, “Spectral method in homogenization theory”, Proc. Steklov Inst. Math., 250 (2005), 85–94 | MR | Zbl

[15] M. Sh. Birman, T. A. Suslina, “Homogenization with corrector term for periodic elliptic differential operators”, St. Petersburg Math. J., 17:6 (2006), 897–973 | DOI | MR | Zbl

[16] S. E. Pastukhova, “Approximations of the resolvent for a non-self-adjoint diffusion operator with rapidly oscillating coefficients”, Math. Notes, 94:1 (2013), 127–145 | DOI | DOI | MR | Zbl

[17] N. N. Senik, “On homogenization for non-self-adjoint locally periodic elliptic operators”, Funct. Anal. Appl., 51:2 (2017), 152–156 | DOI | DOI | MR | Zbl

[18] N. N. Senik, “Homogenization for non-self-adjoint periodic elliptic operators on an infinite cylinder”, SIAM J. Math. Anal., 49:2 (2017), 874–898 | DOI | MR | Zbl

[19] S. E. Pastukhova, “On resolvent approximations of elliptic differential operators with locally periodic coefficients”, Lobachevskii J. Math., 41:5 (2020), 818–838 | DOI | MR | Zbl

[20] S. E. Pastukhova, “$L^2$-estimates for homogenization of elliptic operators”, J. Math. Sci. (N.Y.), 244:4 (2020), 671–685 | DOI | MR | Zbl

[21] S. E. Pastukhova, “$L^2$-approksimatsii rezolventy ellipticheskogo operatora v perforirovannom prostranstve”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 66, no. 2, RUDN, M., 2020, 314–334 | DOI

[22] S. E. Pastukhova, On resolvent approximations of elleptic differential operators with periodic coefficients, 2020, arXiv: 2001.01701

[23] S. E. Pastukhova, “Homogenization estimates for singularly perturbed operators”, J. Math. Sci. (N.Y.), 251:5 (2020), 724–747 | DOI | MR | Zbl

[24] S. E. Pastukhova, “$L^2$-approximation of resolvents in homogenization of higher order elliptic operators”, J. Math. Sci. (N.Y.), 251:6 (2020), 902–925 | DOI | MR | Zbl

[25] V. A. Slousch, T. A. Suslina, “Usrednenie ellipticheskogo operatora chetvertogo poryadka s periodicheskimi koeffitsientami pri uchete korrektorov”, Funkts. analiz i ego pril., 54:3 (2020), 94–99 | DOI | MR