Uniform convergence criterion for non-harmonic sine series
Sbornik. Mathematics, Tome 212 (2021) no. 1, pp. 70-110
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that for a nonnegative monotonic sequence $\{c_k\}$ the condition $c_kk\to 0$ is sufficient for the series $\sum_{k=1}^{\infty}c_k\sin k^{\alpha} x$ to converge uniformly on any bounded set for $\alpha\in (0,2)$, and for any odd $\alpha$ it is sufficient for it to converge uniformly on the whole of $\mathbb{R}$. Moreover, the latter assertion still holds if we replace $k^{\alpha}$ by any polynomial in odd powers with rational coefficients. On the other hand, in the case of even $\alpha$ it is necessary that $\sum_{k=1}^{\infty}c_k\infty$ for the above series to converge at the point $\pi/2$ or at $2\pi/3$. As a consequence, we obtain uniform convergence criteria. Furthermore, the results for natural numbers $\alpha$ remain true for sequences in the more general class $\mathrm{RBVS}$.
Bibliography: 17 titles.
Keywords:
sine series, fractional parts of the values of a polynomial, Weyl sums.
Mots-clés : uniform convergence, monotone coefficients
Mots-clés : uniform convergence, monotone coefficients
@article{SM_2021_212_1_a3,
author = {K. A. Oganesyan},
title = {Uniform convergence criterion for non-harmonic sine series},
journal = {Sbornik. Mathematics},
pages = {70--110},
publisher = {mathdoc},
volume = {212},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_1_a3/}
}
K. A. Oganesyan. Uniform convergence criterion for non-harmonic sine series. Sbornik. Mathematics, Tome 212 (2021) no. 1, pp. 70-110. http://geodesic.mathdoc.fr/item/SM_2021_212_1_a3/