Uniform convergence criterion for non-harmonic sine series
Sbornik. Mathematics, Tome 212 (2021) no. 1, pp. 70-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that for a nonnegative monotonic sequence $\{c_k\}$ the condition $c_kk\to 0$ is sufficient for the series $\sum_{k=1}^{\infty}c_k\sin k^{\alpha} x$ to converge uniformly on any bounded set for $\alpha\in (0,2)$, and for any odd $\alpha$ it is sufficient for it to converge uniformly on the whole of $\mathbb{R}$. Moreover, the latter assertion still holds if we replace $k^{\alpha}$ by any polynomial in odd powers with rational coefficients. On the other hand, in the case of even $\alpha$ it is necessary that $\sum_{k=1}^{\infty}c_k<\infty$ for the above series to converge at the point $\pi/2$ or at $2\pi/3$. As a consequence, we obtain uniform convergence criteria. Furthermore, the results for natural numbers $\alpha$ remain true for sequences in the more general class $\mathrm{RBVS}$. Bibliography: 17 titles.
Keywords: sine series, fractional parts of the values of a polynomial, Weyl sums.
Mots-clés : uniform convergence, monotone coefficients
@article{SM_2021_212_1_a3,
     author = {K. A. Oganesyan},
     title = {Uniform convergence criterion for non-harmonic sine series},
     journal = {Sbornik. Mathematics},
     pages = {70--110},
     year = {2021},
     volume = {212},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_1_a3/}
}
TY  - JOUR
AU  - K. A. Oganesyan
TI  - Uniform convergence criterion for non-harmonic sine series
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 70
EP  - 110
VL  - 212
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_1_a3/
LA  - en
ID  - SM_2021_212_1_a3
ER  - 
%0 Journal Article
%A K. A. Oganesyan
%T Uniform convergence criterion for non-harmonic sine series
%J Sbornik. Mathematics
%D 2021
%P 70-110
%V 212
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2021_212_1_a3/
%G en
%F SM_2021_212_1_a3
K. A. Oganesyan. Uniform convergence criterion for non-harmonic sine series. Sbornik. Mathematics, Tome 212 (2021) no. 1, pp. 70-110. http://geodesic.mathdoc.fr/item/SM_2021_212_1_a3/

[1] T. W. Chaundy, A. E. Jolliffe, “The uniform convergence of a certain class of trigonometrical series”, Proc. London Math. Soc. (2), 15 (1916), 214–216 | DOI | MR | Zbl

[2] J. R. Nurcombe, “On the uniform convergence of sine series with quasimonotone coefficients”, J. Math. Anal. Appl., 166:2 (1992), 577–581 | DOI | MR | Zbl

[3] S. B. Stechkin, “Trigonometric series with monotone type coefficients”, Proc. Steklov Inst. Math. (Suppl.), 2001, suppl. 1, S214–S224 | MR | Zbl

[4] L. Leindler, “On the uniform convergence and boundedness of a certain class of sine series”, Anal. Math., 27:4 (2001), 279–285 | DOI | MR | Zbl

[5] S. Tikhonov, “Trigonometric series with general monotone coefficients”, J. Math. Anal. Appl., 326:1 (2007), 721–735 | DOI | MR | Zbl

[6] S. Tikhonov, “Best approximation and moduli of smoothness: computation and equivalence theorems”, J. Approx. Theory, 153:1 (2008), 19–39 | DOI | MR | Zbl

[7] M. Dyachenko, A. Mukanov, S. Tikhonov, “Uniform convergence of trigonometric series with general monotone coefficients”, Canad. J. Math., 71:6 (2019), 1445–1463 | DOI | MR | Zbl

[8] S. Kȩska, “On the uniform convergence of sine series with square root”, J. Funct. Spaces, 2019 (2019), 1342189, 11 pp. | DOI | MR | Zbl

[9] K. I. Oskolkov, “Series and integrals of I. M. Vinogradov and their applications”, Proc. Steklov Inst. Math., 190 (1992), 193–229 | MR | Zbl

[10] N. M. Korobov, Exponential sums and their applications, Math. Appl. (Soviet Ser.), 80, Kluwer Acad. Publ., Dordrecht, 1992, xvi+209 pp. | DOI | MR | MR | Zbl | Zbl

[11] I. M. Vinogradov, “Analiticheskoe dokazatelstvo teoremy o raspredelenii drobnykh chastei tselogo mnogochlena”, Izv. AN SSSR. VI seriya, 21:4 (1927), 567–578 | Zbl

[12] L. D. Pustyl'nikov, “Distribution of the fractional parts of a polynomial, Weyl sums, and ergodic theory”, Russian Math. Surveys, 48:4 (1993), 143–179 | DOI | MR | Zbl

[13] S. Chowla, H. Davenport, “On Weyl's inequality and Waring's problem for cubes”, Acta Arith., 6 (1960/61), 505–521 | DOI | MR | Zbl

[14] D. R. Heath-Brown, “Bounds for the cubic Weyl sum”, Issledovaniya po teorii chisel. 10, Zap. nauch. sem. POMI, 377, POMI, SPb., 2010, 199–216 | MR | Zbl

[15] T. D. Wooley, “Mean value estimates for odd cubic Weyl sums”, Bull. Lond. Math. Soc., 47:6 (2015), 946–957 | DOI | MR | Zbl

[16] K. I. Oskolkov, “On spectra of uniform convergence”, Soviet Math. Dokl., 33:3 (1986), 616–620 | MR | Zbl

[17] G. I. Arkhipov, K. I. Oskolkov, “On a special trigonometric series and its applications”, Math. USSR-Sb., 62:1 (1989), 145–155 | DOI | MR | Zbl