Mots-clés : conjugacy
@article{SM_2021_212_1_a2,
author = {E. V. Zhuzhoma and V. S. Medvedev},
title = {Necessary and sufficient conditions for~the~conjugacy of {Smale} regular homeomorphisms},
journal = {Sbornik. Mathematics},
pages = {57--69},
year = {2021},
volume = {212},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_1_a2/}
}
E. V. Zhuzhoma; V. S. Medvedev. Necessary and sufficient conditions for the conjugacy of Smale regular homeomorphisms. Sbornik. Mathematics, Tome 212 (2021) no. 1, pp. 57-69. http://geodesic.mathdoc.fr/item/SM_2021_212_1_a2/
[1] D. V. Anosov, “Gladkie dinamicheskie sistemy. Gl. 1. Iskhodnye ponyatiya”, Dinamicheskie sistemy – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 1, VINITI, M., 1985, 156–178 ; “Гл. 2. Элементарная теория”, 178–204 ; D. V. Anosov, “Smooth dynamical systems”, Ch. 1, 2, Dynamical systems I, Encyclopaedia Math. Sci., 1, Springer, Berlin, 1988 | MR | Zbl | MR | Zbl
[2] D. V. Anosov, E. V. Zhuzhoma, “Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings”, Proc. Steklov Inst. Math., 249 (2005), 1–221 | MR | Zbl
[3] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | MR | Zbl
[4] H. Poincaré, “Sur les courbes définies par les équations différentielles”, J. Math. Pures Appl. (4), II (1886), 151–211 | Zbl
[5] I. Nikolaev, E. Zhuzhoma, Flows on 2-dimensional manifolds. An overview, Lecture Notes in Math., 1705, Springer-Verlag, Berlin, 1999, xx+294 pp. | DOI | MR | Zbl
[6] V. Z. Grines, E. V. Zhuzhoma, “On structurally stable diffeomorphisms with expanding attractors or contracting repellers of codimension one”, Dokl. Math., 62:2 (2000), 274–276 | MR | Zbl
[7] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, “New relations for Morse–Smale systems with trivially embedded one-dimensional separatrices”, Sb. Math., 194:7 (2003), 979–1007 | DOI | DOI | MR | Zbl
[8] E. V. Zhuzhoma, V. S. Medvedev, “Continuous Morse–Smale flows with three equilibrium positions”, Sb. Math., 207:5 (2016), 702–723 | DOI | DOI | MR | Zbl
[9] E. V. Zhuzhoma, V. S. Medvedev, “Conjugacy of Morse–Smale diffeomorphisms with three nonwandering points”, Math. Notes, 104:5 (2018), 753–757 | DOI | DOI | MR | Zbl
[10] J. Milnor, “On manifolds homeomorphic to the 7-sphere”, Ann. of Math. (2), 64:2 (1956), 399–405 | DOI | MR | Zbl
[11] A. Andronov, L. S. Pontryagin, “Grubye sistemy”, Dokl. AN SSSR, 14:5 (1937), 247–250 | Zbl
[12] D. V. Anosov, “Roughness of geodesic flows on compact Riemannian manifolds of negative curvature”, Soviet Math. Dokl., 3 (1962), 1068–1070 | MR | Zbl
[13] D. V. Anosov, “Geodesic flows on closed Riemann manifolds with negative curvature”, Proc. Steklov Inst. Math., 90 (1967), 1–235 | MR | Zbl
[14] V. Z. Grines, “Topological classification of Morse–Smale diffeomorphisms with finite set of heteroclinic trajectories on surfaces”, Math. Notes, 54:3 (1993), 881–889 | DOI | MR | Zbl
[15] E. V. Zhuzhoma, V. S. Medvedev, “Global dynamics of Morse–Smale systems”, Proc. Steklov Inst. Math., 261 (2008), 112–135 | DOI | MR | Zbl
[16] V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, O. V. Pochinka, “Classification of Morse–Smale systems and topological structure of the underlying manifolds”, Russian Math. Surveys, 74:1 (2019), 37–110 | DOI | DOI | MR | Zbl
[17] C. Bonatti, V. Grines, “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602 | DOI | MR | Zbl
[18] C. Bonatti, V. Z. Grines, V. S. Medvedev, E. Pecou, “On the topological classification of gradient-like diffeomorphisms without heteroclinic curves on three-dimensional manifolds”, Dokl. Math., 63:2 (2001), 161–164 | MR | Zbl
[19] C. Bonatti, V. Grines, V. Medvedev, E. Pécou, “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43:2 (2004), 369–391 | DOI | MR | Zbl
[20] V. Z. Grines, O. V. Pochinka, Vvedenie v topologicheskuyu klassifikatsiyu diffeomorfizmov na mnogoobraziyakh razmernosti dva i tri, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2011, 424 pp.
[21] D. M. Grobman, “Gomeomorfizm sistem differentsialnykh uravnenii”, Dokl. AN SSSR, 128:5 (1959), 880–881 | MR | Zbl
[22] D. M. Grobman, “Topologicheskaya klassifikatsiya okrestnostei osoboi tochki v $n$-mernom prostranstve”, Matem. sb., 56(98):1 (1962), 77–94 | MR | Zbl
[23] P. Hartman, “On the local linearization of differential equations”, Proc. Amer. Math. Soc., 14:4 (1963), 568–573 | DOI | MR | Zbl
[24] M. W. Hirsch, C. C. Pugh, M. Shub, Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin–New York, 1977, ii+149 pp. | DOI | MR | Zbl
[25] J. Palis, “On Morse–Smale dynamical systems”, Topology, 8:4 (1969), 385–404 | DOI | MR | Zbl
[26] S. Smale, “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR | Zbl