Mots-clés : Hausdorff distance
@article{SM_2021_212_1_a1,
author = {A. Kh. Galstyan and A. O. Ivanov and A. A. Tuzhilin},
title = {The {Fermat-Steiner} problem in the space of compact subsets of~$\mathbb R^m$ endowed with the {Hausdorff} metric},
journal = {Sbornik. Mathematics},
pages = {25--56},
year = {2021},
volume = {212},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_1_a1/}
}
TY - JOUR AU - A. Kh. Galstyan AU - A. O. Ivanov AU - A. A. Tuzhilin TI - The Fermat-Steiner problem in the space of compact subsets of $\mathbb R^m$ endowed with the Hausdorff metric JO - Sbornik. Mathematics PY - 2021 SP - 25 EP - 56 VL - 212 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_2021_212_1_a1/ LA - en ID - SM_2021_212_1_a1 ER -
%0 Journal Article %A A. Kh. Galstyan %A A. O. Ivanov %A A. A. Tuzhilin %T The Fermat-Steiner problem in the space of compact subsets of $\mathbb R^m$ endowed with the Hausdorff metric %J Sbornik. Mathematics %D 2021 %P 25-56 %V 212 %N 1 %U http://geodesic.mathdoc.fr/item/SM_2021_212_1_a1/ %G en %F SM_2021_212_1_a1
A. Kh. Galstyan; A. O. Ivanov; A. A. Tuzhilin. The Fermat-Steiner problem in the space of compact subsets of $\mathbb R^m$ endowed with the Hausdorff metric. Sbornik. Mathematics, Tome 212 (2021) no. 1, pp. 25-56. http://geodesic.mathdoc.fr/item/SM_2021_212_1_a1/
[1] A. O. Ivanov, A. A. Tuzhilin, Branching solutions to one-dimensional variational problems, World Sci. Publ., River Edge, NJ, 2001, xxii+342 pp. | DOI | MR | Zbl
[2] D. Cieslik, Steiner minimal trees, Nonconvex Optim. Appl., 23, Kluwer Acad. Publ., Dordrecht, 1998, xii+319 pp. | DOI | MR | Zbl
[3] A. O. Ivanov, A. A. Tuzhilin, “Minimal networks: a review”, Advances in dynamical systems and control, Stud. Syst. Decis. Control, 69, Springer, [Cham], 2016, 43–80 | DOI | MR | Zbl
[4] V. Jarník, M. Kössler, “O minimálních grafech, obsahujících $n$ daných bodů [On minimal graphs containing $n$ given points]”, Časopis Pěst. Mat. Fys., 63:8 (1934), 223–235 | DOI | Zbl
[5] R. Courant, H. Robbins, What is mathematics?, Oxford Univ. Press, New York, 1941, xix+521 pp. | MR | Zbl
[6] Z. Drezner, K. Klamroth, A. Schöbel, G. O. Wesolowsky, “The Weber problem”, Facility location: applications and theory, Springer, Berlin, 2002, 1–36 | MR | Zbl
[7] A. Ivanov, A. Tropin, A. Tuzhilin, “Fermat–Steiner problem in the metric space of compact sets endowed with Hausdorff distance”, J. Geom., 108:2 (2017), 575–590 | DOI | MR | Zbl
[8] S. Schlicker, The geometry of the Hausdorff metric, GVSU REU 2008, Grand Valley State Univ., Allendale, MI, 2008, 11 pp. http://faculty.gvsu.edu/schlicks/HMG2008.pdf
[9] D. Burago, Yu. Burago, S. Ivanov, A course in metric geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001, xiv+415 pp. | DOI | MR | Zbl
[10] C. C. Blackburn, K. Lund, S. Schlicker, P. Sigmon, A. Zupan, An introduction to the geometry of $\mathscr{H}(\mathbb R^n)$, GVSU REU 2007, Grand Valley State Univ., Allendale, MI, 2007
[11] F. Mémoli, “On the use of Gromov–Hausdorff distances for shape comparison”, Eurographics symposium on point based graphics, The Eurographics Association, Prague, 2007, 81–90 | DOI
[12] F. Mémoli, “Some properties of Gromov–Hausdorff distances”, Discrete Comput. Geom., 48:2 (2012), 416–440 | DOI | MR | Zbl
[13] A. O. Ivanov, A. A. Tuzhilin, “Isometry group of Gromov–Hausdorff space”, Mat. Vesnik, 71:1-2 (2019), 123–154 | MR
[14] O. Melnikov, R. Tyshkevich, V. Yemelichev, V. Sarvanov, Lectures on graph theory, Bibliographisches Institut, Mannheim, 1994, x+371 pp. | MR | Zbl | Zbl
[15] A. O. Ivanov, A. A. Tuzhilin, Geometriya rasstoyanii Khausdorfa i Gromova–Khausdorfa: sluchai kompaktov, Izd-vo Popechitelskogo soveta mekh.-matem. f-ta MGU, M., 2017, 111 pp.
[16] A. M. Tropin, Minimalnye derevya Shteinera v prostranstve s metrikoi Khausdorfa, Diplomnaya rabota, Mekh.-matem. f-t MGU, M., 2014