The Fermat-Steiner problem in the space of compact subsets of~$\mathbb R^m$ endowed with the Hausdorff metric
Sbornik. Mathematics, Tome 212 (2021) no. 1, pp. 25-56
Voir la notice de l'article provenant de la source Math-Net.Ru
The Fermat-Steiner problem consists in finding all points in a metric space $X$ at which the sum of the distances to fixed points $A_1,\dots,A_n$ of $X$ attains its minimum value. This problem is studied in the metric space $\mathscr{H}(\mathbb R^m)$ of all nonempty compact subsets of the Euclidean space $\mathbb R^m$, and the $A_i$ are pairwise disjoint finite sets in $\mathbb R^m$. The set of solutions of this problem (which are called Steiner compact sets) falls into different classes in accordance with the distances to the $A_i$. Each class contains an inclusion-greatest element and inclusion-minimal elements (a maximal Steiner compact set and minimal Steiner compact sets, respectively). We find a necessary and sufficient condition for a compact set to be a minimal Steiner compact set in a given class, provide an algorithm for constructing such compact sets and find a sharp estimate for their cardinalities. We also put forward a number of geometric properties of minimal and maximal compact sets. The results obtained can significantly facilitate the solution of specific problems, which is demonstrated by the well-known example of a symmetric set $\{A_1,A_2,A_3\}\subset\mathbb R^2$, for which all Steiner compact sets are asymmetric. The analysis of this case is significantly simplified due to the technique developed.
Bibliography 16 titles.
Keywords:
minimal networks, Fermat-Steiner problem, Steiner problem, metric geometry.
Mots-clés : Hausdorff distance
Mots-clés : Hausdorff distance
@article{SM_2021_212_1_a1,
author = {A. Kh. Galstyan and A. O. Ivanov and A. A. Tuzhilin},
title = {The {Fermat-Steiner} problem in the space of compact subsets of~$\mathbb R^m$ endowed with the {Hausdorff} metric},
journal = {Sbornik. Mathematics},
pages = {25--56},
publisher = {mathdoc},
volume = {212},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_1_a1/}
}
TY - JOUR AU - A. Kh. Galstyan AU - A. O. Ivanov AU - A. A. Tuzhilin TI - The Fermat-Steiner problem in the space of compact subsets of~$\mathbb R^m$ endowed with the Hausdorff metric JO - Sbornik. Mathematics PY - 2021 SP - 25 EP - 56 VL - 212 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2021_212_1_a1/ LA - en ID - SM_2021_212_1_a1 ER -
%0 Journal Article %A A. Kh. Galstyan %A A. O. Ivanov %A A. A. Tuzhilin %T The Fermat-Steiner problem in the space of compact subsets of~$\mathbb R^m$ endowed with the Hausdorff metric %J Sbornik. Mathematics %D 2021 %P 25-56 %V 212 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2021_212_1_a1/ %G en %F SM_2021_212_1_a1
A. Kh. Galstyan; A. O. Ivanov; A. A. Tuzhilin. The Fermat-Steiner problem in the space of compact subsets of~$\mathbb R^m$ endowed with the Hausdorff metric. Sbornik. Mathematics, Tome 212 (2021) no. 1, pp. 25-56. http://geodesic.mathdoc.fr/item/SM_2021_212_1_a1/