The Fermat-Steiner problem in the space of compact subsets of~$\mathbb R^m$ endowed with the Hausdorff metric
Sbornik. Mathematics, Tome 212 (2021) no. 1, pp. 25-56

Voir la notice de l'article provenant de la source Math-Net.Ru

The Fermat-Steiner problem consists in finding all points in a metric space $X$ at which the sum of the distances to fixed points $A_1,\dots,A_n$ of $X$ attains its minimum value. This problem is studied in the metric space $\mathscr{H}(\mathbb R^m)$ of all nonempty compact subsets of the Euclidean space $\mathbb R^m$, and the $A_i$ are pairwise disjoint finite sets in $\mathbb R^m$. The set of solutions of this problem (which are called Steiner compact sets) falls into different classes in accordance with the distances to the $A_i$. Each class contains an inclusion-greatest element and inclusion-minimal elements (a maximal Steiner compact set and minimal Steiner compact sets, respectively). We find a necessary and sufficient condition for a compact set to be a minimal Steiner compact set in a given class, provide an algorithm for constructing such compact sets and find a sharp estimate for their cardinalities. We also put forward a number of geometric properties of minimal and maximal compact sets. The results obtained can significantly facilitate the solution of specific problems, which is demonstrated by the well-known example of a symmetric set $\{A_1,A_2,A_3\}\subset\mathbb R^2$, for which all Steiner compact sets are asymmetric. The analysis of this case is significantly simplified due to the technique developed. Bibliography 16 titles.
Keywords: minimal networks, Fermat-Steiner problem, Steiner problem, metric geometry.
Mots-clés : Hausdorff distance
@article{SM_2021_212_1_a1,
     author = {A. Kh. Galstyan and A. O. Ivanov and A. A. Tuzhilin},
     title = {The {Fermat-Steiner} problem in the space of compact subsets of~$\mathbb R^m$ endowed with the {Hausdorff} metric},
     journal = {Sbornik. Mathematics},
     pages = {25--56},
     publisher = {mathdoc},
     volume = {212},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_1_a1/}
}
TY  - JOUR
AU  - A. Kh. Galstyan
AU  - A. O. Ivanov
AU  - A. A. Tuzhilin
TI  - The Fermat-Steiner problem in the space of compact subsets of~$\mathbb R^m$ endowed with the Hausdorff metric
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 25
EP  - 56
VL  - 212
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_1_a1/
LA  - en
ID  - SM_2021_212_1_a1
ER  - 
%0 Journal Article
%A A. Kh. Galstyan
%A A. O. Ivanov
%A A. A. Tuzhilin
%T The Fermat-Steiner problem in the space of compact subsets of~$\mathbb R^m$ endowed with the Hausdorff metric
%J Sbornik. Mathematics
%D 2021
%P 25-56
%V 212
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_1_a1/
%G en
%F SM_2021_212_1_a1
A. Kh. Galstyan; A. O. Ivanov; A. A. Tuzhilin. The Fermat-Steiner problem in the space of compact subsets of~$\mathbb R^m$ endowed with the Hausdorff metric. Sbornik. Mathematics, Tome 212 (2021) no. 1, pp. 25-56. http://geodesic.mathdoc.fr/item/SM_2021_212_1_a1/