Critical Galton-Watson branching processes with a countable set of types and infinite second moments
Sbornik. Mathematics, Tome 212 (2021) no. 1, pp. 1-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an indecomposable Galton-Watson branching process with a countable set of types. Assuming that the process is critical and may have infinite variance of the offspring sizes of some (or all) types of particles we describe the asymptotic behaviour of the survival probability of the process and establish a Yaglom-type conditional limit theorem for the infinite-dimensional vector of the number of particles of all types. Bibliography: 20 titles.
Keywords: critical Galton-Watson branching processes with a countable set of types, survival probability, infinite second moments of offspring sizes, regularly varying functions
Mots-clés : Yaglom-type limit theorem.
@article{SM_2021_212_1_a0,
     author = {V. A. Vatutin and E. E. Dyakonova and V. A. Topchii},
     title = {Critical {Galton-Watson} branching processes with a~countable set of types and infinite second moments},
     journal = {Sbornik. Mathematics},
     pages = {1--24},
     year = {2021},
     volume = {212},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_1_a0/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. Dyakonova
AU  - V. A. Topchii
TI  - Critical Galton-Watson branching processes with a countable set of types and infinite second moments
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1
EP  - 24
VL  - 212
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_1_a0/
LA  - en
ID  - SM_2021_212_1_a0
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. Dyakonova
%A V. A. Topchii
%T Critical Galton-Watson branching processes with a countable set of types and infinite second moments
%J Sbornik. Mathematics
%D 2021
%P 1-24
%V 212
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2021_212_1_a0/
%G en
%F SM_2021_212_1_a0
V. A. Vatutin; E. E. Dyakonova; V. A. Topchii. Critical Galton-Watson branching processes with a countable set of types and infinite second moments. Sbornik. Mathematics, Tome 212 (2021) no. 1, pp. 1-24. http://geodesic.mathdoc.fr/item/SM_2021_212_1_a0/

[1] D. Vere-Jones, “Ergodic properties of nonnegative matrices. I”, Pacific J. Math., 22:2 (1967), 361–386 | DOI | MR | Zbl

[2] S. Sagitov, “Linear-fractional branching processes with countably many types”, Stochastic Process. Appl., 123:8 (2013), 2940–2956 | DOI | MR | Zbl

[3] P. Braunsteins, S. Hautphenne, “Extinction in lower Hessenberg branching processes with countably many types”, Ann. Appl. Probab., 29:5 (2019), 2782–2818 | DOI | MR | Zbl

[4] A. N. Kolmogorov, “K resheniyu odnoi biologicheskoi zadachi”, Izv. NII matem. i mekh. Tomsk. un-ta, 2:1 (1938), 7–12 | Zbl

[5] A. M. Yaglom, “Nekotorye predelnye teoremy teorii vetvyaschikhsya sluchainykh protsessov”, Dokl. AN SSSR, 56:8 (1947), 795–798 | MR | Zbl

[6] A. Joffe, F. Spitzer, “On multitype branching processes with $\rho \leq 1$”, J. Math. Anal. Appl., 19:3 (1967), 409–430 | DOI | MR | Zbl

[7] V. M. Zolotarev, “More exact statements of several theorems in the theory of branching processes”, Theory Probab. Appl., 2:2 (1957), 245–253 | DOI | MR | Zbl

[8] R. S. Slack, “A branching process with mean one and possibly infinite variance”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 9 (1968), 139–145 | DOI | MR | Zbl

[9] R. S. Slack, “Further notes on branching processes with mean 1”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 25 (1972/73), 31–38 | DOI | MR | Zbl

[10] V. A. Vatutin, “Limit theorems for critical Markov branching processes with several types of particles and infinite second moments”, Math. USSR-Sb., 32:2 (1977), 215–225 | DOI | MR | Zbl

[11] M. I. Goldstein, F. M. Hoppe, “Critical multitype branching processes with infinite variance”, J. Math. Anal. Appl., 65:3 (1978), 675–686 | DOI | MR | Zbl

[12] P. Braunsteins, G. Decrouez, S. Hautphenne, “A pathwise approach to the extinction of branching processes with countably many types”, Stochastic Process. Appl., 129:3 (2019), 713–739 | DOI | MR | Zbl

[13] K. B. Athreya, Hye-Jeong Kang, “Some limit theorems for positive recurrent branching Markov chains. I”, Adv. in Appl. Probab., 30:3 (1998), 693–710 ; II, 711–722 | DOI | MR | Zbl | DOI | Zbl

[14] S. Hautphenne, G. Latouche, G. Nguyen, “Extinction probabilities of branching processes with countably infinitely many types”, Adv. in Appl. Probab., 45:4 (2013), 1068–1082 | DOI | MR | Zbl

[15] H. Kesten, “Supercritical branching processes with countably many types and the size of random Cantor sets”, Probability, statistics, and mathematics, Papers in honor of S. Karlin, Academic Press, Boston, MA, 1989, 103–121 | DOI | MR | Zbl

[16] T. E. Harris, The theory of branching processes, Grundlehren Math. Wiss., 119, Springer-Verlag, Berlin; Prentice-Hall, Inc., Englewood Cliffs, NJ, 1963, xiv+230 pp. | MR | Zbl

[17] G. T. Tetzlaff, “Criticality in discrete time branching processes with not uniformly bounded types”, Rev. Mat. Apl., 24:1-2 (2003/04), 33–44 | MR | Zbl

[18] B. A. Sewastjanow, Verzweigungsprozesse, Math. Lehrbücher Monogr. II. Abt. Math. Monogr., 34, Akademie-Verlag, Berlin, 1974, xi+326 pp. | MR | MR | Zbl | Zbl

[19] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–New York, 1976, v+112 pp. | DOI | MR | MR | Zbl | Zbl

[20] W. Feller, An introduction to probability theory and its applications, v. II, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl