Mots-clés : Yaglom-type limit theorem.
@article{SM_2021_212_1_a0,
author = {V. A. Vatutin and E. E. Dyakonova and V. A. Topchii},
title = {Critical {Galton-Watson} branching processes with a~countable set of types and infinite second moments},
journal = {Sbornik. Mathematics},
pages = {1--24},
year = {2021},
volume = {212},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_1_a0/}
}
TY - JOUR AU - V. A. Vatutin AU - E. E. Dyakonova AU - V. A. Topchii TI - Critical Galton-Watson branching processes with a countable set of types and infinite second moments JO - Sbornik. Mathematics PY - 2021 SP - 1 EP - 24 VL - 212 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_2021_212_1_a0/ LA - en ID - SM_2021_212_1_a0 ER -
%0 Journal Article %A V. A. Vatutin %A E. E. Dyakonova %A V. A. Topchii %T Critical Galton-Watson branching processes with a countable set of types and infinite second moments %J Sbornik. Mathematics %D 2021 %P 1-24 %V 212 %N 1 %U http://geodesic.mathdoc.fr/item/SM_2021_212_1_a0/ %G en %F SM_2021_212_1_a0
V. A. Vatutin; E. E. Dyakonova; V. A. Topchii. Critical Galton-Watson branching processes with a countable set of types and infinite second moments. Sbornik. Mathematics, Tome 212 (2021) no. 1, pp. 1-24. http://geodesic.mathdoc.fr/item/SM_2021_212_1_a0/
[1] D. Vere-Jones, “Ergodic properties of nonnegative matrices. I”, Pacific J. Math., 22:2 (1967), 361–386 | DOI | MR | Zbl
[2] S. Sagitov, “Linear-fractional branching processes with countably many types”, Stochastic Process. Appl., 123:8 (2013), 2940–2956 | DOI | MR | Zbl
[3] P. Braunsteins, S. Hautphenne, “Extinction in lower Hessenberg branching processes with countably many types”, Ann. Appl. Probab., 29:5 (2019), 2782–2818 | DOI | MR | Zbl
[4] A. N. Kolmogorov, “K resheniyu odnoi biologicheskoi zadachi”, Izv. NII matem. i mekh. Tomsk. un-ta, 2:1 (1938), 7–12 | Zbl
[5] A. M. Yaglom, “Nekotorye predelnye teoremy teorii vetvyaschikhsya sluchainykh protsessov”, Dokl. AN SSSR, 56:8 (1947), 795–798 | MR | Zbl
[6] A. Joffe, F. Spitzer, “On multitype branching processes with $\rho \leq 1$”, J. Math. Anal. Appl., 19:3 (1967), 409–430 | DOI | MR | Zbl
[7] V. M. Zolotarev, “More exact statements of several theorems in the theory of branching processes”, Theory Probab. Appl., 2:2 (1957), 245–253 | DOI | MR | Zbl
[8] R. S. Slack, “A branching process with mean one and possibly infinite variance”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 9 (1968), 139–145 | DOI | MR | Zbl
[9] R. S. Slack, “Further notes on branching processes with mean 1”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 25 (1972/73), 31–38 | DOI | MR | Zbl
[10] V. A. Vatutin, “Limit theorems for critical Markov branching processes with several types of particles and infinite second moments”, Math. USSR-Sb., 32:2 (1977), 215–225 | DOI | MR | Zbl
[11] M. I. Goldstein, F. M. Hoppe, “Critical multitype branching processes with infinite variance”, J. Math. Anal. Appl., 65:3 (1978), 675–686 | DOI | MR | Zbl
[12] P. Braunsteins, G. Decrouez, S. Hautphenne, “A pathwise approach to the extinction of branching processes with countably many types”, Stochastic Process. Appl., 129:3 (2019), 713–739 | DOI | MR | Zbl
[13] K. B. Athreya, Hye-Jeong Kang, “Some limit theorems for positive recurrent branching Markov chains. I”, Adv. in Appl. Probab., 30:3 (1998), 693–710 ; II, 711–722 | DOI | MR | Zbl | DOI | Zbl
[14] S. Hautphenne, G. Latouche, G. Nguyen, “Extinction probabilities of branching processes with countably infinitely many types”, Adv. in Appl. Probab., 45:4 (2013), 1068–1082 | DOI | MR | Zbl
[15] H. Kesten, “Supercritical branching processes with countably many types and the size of random Cantor sets”, Probability, statistics, and mathematics, Papers in honor of S. Karlin, Academic Press, Boston, MA, 1989, 103–121 | DOI | MR | Zbl
[16] T. E. Harris, The theory of branching processes, Grundlehren Math. Wiss., 119, Springer-Verlag, Berlin; Prentice-Hall, Inc., Englewood Cliffs, NJ, 1963, xiv+230 pp. | MR | Zbl
[17] G. T. Tetzlaff, “Criticality in discrete time branching processes with not uniformly bounded types”, Rev. Mat. Apl., 24:1-2 (2003/04), 33–44 | MR | Zbl
[18] B. A. Sewastjanow, Verzweigungsprozesse, Math. Lehrbücher Monogr. II. Abt. Math. Monogr., 34, Akademie-Verlag, Berlin, 1974, xi+326 pp. | MR | MR | Zbl | Zbl
[19] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–New York, 1976, v+112 pp. | DOI | MR | MR | Zbl | Zbl
[20] W. Feller, An introduction to probability theory and its applications, v. II, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl