Orbit spaces for torus actions on Hessenberg varieties
Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1765-1784 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study effective actions of the compact torus $T^{n-1}$ on smooth compact manifolds $M^{2n}$ of even dimension with isolated fixed points. It is proved that under certain conditions on the weight vectors of the tangent representation, the orbit space of such an action is a manifold with corners. In the case of Hamiltonian actions, the orbit space is homotopy equivalent to $S^{n+1} \setminus (U_1 \sqcup \dots \sqcup U_l)$, the complement to the union of disjoint open subsets of the $(n + 1)$-sphere. The results obtained are applied to regular Hessenberg varieties and isospectral manifolds of Hermitian matrices of step type. Bibliography: 23 titles.
Keywords: complexity of the action, Hessenberg varieties.
Mots-clés : torus actions, orbit space
@article{SM_2021_212_12_a5,
     author = {V. V. Cherepanov},
     title = {Orbit spaces for torus actions on {Hessenberg} varieties},
     journal = {Sbornik. Mathematics},
     pages = {1765--1784},
     year = {2021},
     volume = {212},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_12_a5/}
}
TY  - JOUR
AU  - V. V. Cherepanov
TI  - Orbit spaces for torus actions on Hessenberg varieties
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1765
EP  - 1784
VL  - 212
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_12_a5/
LA  - en
ID  - SM_2021_212_12_a5
ER  - 
%0 Journal Article
%A V. V. Cherepanov
%T Orbit spaces for torus actions on Hessenberg varieties
%J Sbornik. Mathematics
%D 2021
%P 1765-1784
%V 212
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2021_212_12_a5/
%G en
%F SM_2021_212_12_a5
V. V. Cherepanov. Orbit spaces for torus actions on Hessenberg varieties. Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1765-1784. http://geodesic.mathdoc.fr/item/SM_2021_212_12_a5/

[1] A. A. Ayzenberg, “Torus actions of complexity 1 and their local properties”, Proc. Steklov Inst. Math., 302 (2018), 16–32 | DOI | DOI | MR | Zbl

[2] A. Ayzenberg, Torus action on quaternionic projective plane and related spaces, arXiv: 1903.03460

[3] A. Ayzenberg, V. Buchstaber, Manifolds of isospectral matrices and Hessenberg varieties, arXiv: 1803.01132v1

[4] A. Ayzenberg, V. Buchstaber, Manifolds of isospectral arrow matrices, arXiv: 1803.10449

[5] H. Abe, P. Crooks, Hessenberg varieties, Slodowy slices, and integrable systems, arXiv: 1807.07792

[6] H. Abe, N. Fujita, Haozhi Zeng, Geometry of regular Hessenberg varieties, arXiv: 1712.09269

[7] V. M. Buchstaber, S. Terzić, “The foundations of $(2n,k)$-manifolds”, Sb. Math., 210:4 (2019), 508–549 | DOI | DOI | MR | Zbl

[8] V. M. Buchstaber, S. Terzić, Toric topology of the complex Grassmann manifolds, arXiv: 1802.06449v2

[9] V. M. Buchstaber, S. Terzić, “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $\mathbb CP^5$”, Mosc. Math. J., 16:2 (2016), 237–273 | DOI | MR | Zbl

[10] V. M. Bukhshtaber, T. E. Panov, Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004, 272 pp. | MR | Zbl

[11] V. M. Buchstaber, T. E. Panov, Toric topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015, xiv+518 pp. | DOI | MR | Zbl

[12] M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[13] Symplectic geometry and topology, Lecture notes from the graduate summer school program (Park City, UT, USA, 1997), IAS/Park City Math. Ser., 7, eds. Ya. Eliashberg, L. Traynor, Amer. Math. Soc., Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ, 1999, xiv+430 pp. | DOI | MR | Zbl

[14] Wu Yi Hsiang, Cohomology theory of topological transformation groups, Ergeb. Math. Grenzgeb., 85, Springer-Verlag, New York–Heidelberg, 1975, x+164 pp. | DOI | MR | MR | Zbl | Zbl

[15] A. Hattori, M. Masuda, “Theory of multi-fans”, Osaka J. Math., 40:1 (2003), 1–68 | MR | Zbl

[16] D. Joyce, “On manifolds with corners”, Advances in geometric analysis, Adv. Lect. Math. (ALM), 21, Int. Press, Somerville, MA, 225–258 | MR | Zbl

[17] Y. Karshon, S. Tolman, Topology of complexity one quotients, arXiv: 1810.01026v1

[18] G. Laures, “On cobordism of manifolds with corners”, Trans. Amer. Math. Soc., 352:12 (2000), 5667–5688 | DOI | MR | Zbl

[19] A. V. Penskoi, “Integrable systems and the topology of isospectral manifolds”, Theoret. and Math. Phys., 155:1 (2008), 627–632 | DOI | DOI | MR | Zbl

[20] A. V. Penskoi, “The Volterra system and the topology of the isospectral variety of zero-diagonal Jacobi matrices”, Russian Math. Surveys, 62:3 (2007), 626–628 | DOI | DOI | MR | Zbl

[21] S. Smale, “A Vietoris mapping theorem for homotopy”, Proc. Amer. Math. Soc., 8:3 (1957), 604–610 | DOI | MR | Zbl

[22] H. Süß, Orbit spaces of maximal torus actions on oriented Grassmannians of planes, arXiv: 1810.00981

[23] C. Tomei, “The topology of isospectral manifolds of tridiagonal matrices”, Duke Math. J., 51:4 (1984), 981–996 | DOI | MR | Zbl