Mots-clés : torus actions, orbit space
@article{SM_2021_212_12_a5,
author = {V. V. Cherepanov},
title = {Orbit spaces for torus actions on {Hessenberg} varieties},
journal = {Sbornik. Mathematics},
pages = {1765--1784},
year = {2021},
volume = {212},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_12_a5/}
}
V. V. Cherepanov. Orbit spaces for torus actions on Hessenberg varieties. Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1765-1784. http://geodesic.mathdoc.fr/item/SM_2021_212_12_a5/
[1] A. A. Ayzenberg, “Torus actions of complexity 1 and their local properties”, Proc. Steklov Inst. Math., 302 (2018), 16–32 | DOI | DOI | MR | Zbl
[2] A. Ayzenberg, Torus action on quaternionic projective plane and related spaces, arXiv: 1903.03460
[3] A. Ayzenberg, V. Buchstaber, Manifolds of isospectral matrices and Hessenberg varieties, arXiv: 1803.01132v1
[4] A. Ayzenberg, V. Buchstaber, Manifolds of isospectral arrow matrices, arXiv: 1803.10449
[5] H. Abe, P. Crooks, Hessenberg varieties, Slodowy slices, and integrable systems, arXiv: 1807.07792
[6] H. Abe, N. Fujita, Haozhi Zeng, Geometry of regular Hessenberg varieties, arXiv: 1712.09269
[7] V. M. Buchstaber, S. Terzić, “The foundations of $(2n,k)$-manifolds”, Sb. Math., 210:4 (2019), 508–549 | DOI | DOI | MR | Zbl
[8] V. M. Buchstaber, S. Terzić, Toric topology of the complex Grassmann manifolds, arXiv: 1802.06449v2
[9] V. M. Buchstaber, S. Terzić, “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $\mathbb CP^5$”, Mosc. Math. J., 16:2 (2016), 237–273 | DOI | MR | Zbl
[10] V. M. Bukhshtaber, T. E. Panov, Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004, 272 pp. | MR | Zbl
[11] V. M. Buchstaber, T. E. Panov, Toric topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015, xiv+518 pp. | DOI | MR | Zbl
[12] M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl
[13] Symplectic geometry and topology, Lecture notes from the graduate summer school program (Park City, UT, USA, 1997), IAS/Park City Math. Ser., 7, eds. Ya. Eliashberg, L. Traynor, Amer. Math. Soc., Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ, 1999, xiv+430 pp. | DOI | MR | Zbl
[14] Wu Yi Hsiang, Cohomology theory of topological transformation groups, Ergeb. Math. Grenzgeb., 85, Springer-Verlag, New York–Heidelberg, 1975, x+164 pp. | DOI | MR | MR | Zbl | Zbl
[15] A. Hattori, M. Masuda, “Theory of multi-fans”, Osaka J. Math., 40:1 (2003), 1–68 | MR | Zbl
[16] D. Joyce, “On manifolds with corners”, Advances in geometric analysis, Adv. Lect. Math. (ALM), 21, Int. Press, Somerville, MA, 225–258 | MR | Zbl
[17] Y. Karshon, S. Tolman, Topology of complexity one quotients, arXiv: 1810.01026v1
[18] G. Laures, “On cobordism of manifolds with corners”, Trans. Amer. Math. Soc., 352:12 (2000), 5667–5688 | DOI | MR | Zbl
[19] A. V. Penskoi, “Integrable systems and the topology of isospectral manifolds”, Theoret. and Math. Phys., 155:1 (2008), 627–632 | DOI | DOI | MR | Zbl
[20] A. V. Penskoi, “The Volterra system and the topology of the isospectral variety of zero-diagonal Jacobi matrices”, Russian Math. Surveys, 62:3 (2007), 626–628 | DOI | DOI | MR | Zbl
[21] S. Smale, “A Vietoris mapping theorem for homotopy”, Proc. Amer. Math. Soc., 8:3 (1957), 604–610 | DOI | MR | Zbl
[22] H. Süß, Orbit spaces of maximal torus actions on oriented Grassmannians of planes, arXiv: 1810.00981
[23] C. Tomei, “The topology of isospectral manifolds of tridiagonal matrices”, Duke Math. J., 51:4 (1984), 981–996 | DOI | MR | Zbl