Orbit spaces for torus actions on Hessenberg varieties
Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1765-1784
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study effective actions of the compact torus $T^{n-1}$ on smooth compact manifolds $M^{2n}$ of even dimension with isolated fixed points. It is proved that under certain conditions on the weight vectors of the tangent representation, the orbit space of such an action is a manifold with corners. In the case of Hamiltonian actions, the orbit space is homotopy equivalent to $S^{n+1} \setminus (U_1 \sqcup \dots \sqcup U_l)$, the complement to the union of disjoint open subsets of the $(n + 1)$-sphere. The results obtained are applied to regular Hessenberg varieties and isospectral manifolds of Hermitian matrices of step type.
Bibliography: 23 titles.
Keywords:
complexity of the action, Hessenberg varieties.
Mots-clés : torus actions, orbit space
Mots-clés : torus actions, orbit space
@article{SM_2021_212_12_a5,
author = {V. V. Cherepanov},
title = {Orbit spaces for torus actions on {Hessenberg} varieties},
journal = {Sbornik. Mathematics},
pages = {1765--1784},
publisher = {mathdoc},
volume = {212},
number = {12},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_12_a5/}
}
V. V. Cherepanov. Orbit spaces for torus actions on Hessenberg varieties. Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1765-1784. http://geodesic.mathdoc.fr/item/SM_2021_212_12_a5/