Orbit spaces for torus actions on Hessenberg varieties
Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1765-1784

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study effective actions of the compact torus $T^{n-1}$ on smooth compact manifolds $M^{2n}$ of even dimension with isolated fixed points. It is proved that under certain conditions on the weight vectors of the tangent representation, the orbit space of such an action is a manifold with corners. In the case of Hamiltonian actions, the orbit space is homotopy equivalent to $S^{n+1} \setminus (U_1 \sqcup \dots \sqcup U_l)$, the complement to the union of disjoint open subsets of the $(n + 1)$-sphere. The results obtained are applied to regular Hessenberg varieties and isospectral manifolds of Hermitian matrices of step type. Bibliography: 23 titles.
Keywords: complexity of the action, Hessenberg varieties.
Mots-clés : torus actions, orbit space
@article{SM_2021_212_12_a5,
     author = {V. V. Cherepanov},
     title = {Orbit spaces for torus actions on {Hessenberg} varieties},
     journal = {Sbornik. Mathematics},
     pages = {1765--1784},
     publisher = {mathdoc},
     volume = {212},
     number = {12},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_12_a5/}
}
TY  - JOUR
AU  - V. V. Cherepanov
TI  - Orbit spaces for torus actions on Hessenberg varieties
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1765
EP  - 1784
VL  - 212
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_12_a5/
LA  - en
ID  - SM_2021_212_12_a5
ER  - 
%0 Journal Article
%A V. V. Cherepanov
%T Orbit spaces for torus actions on Hessenberg varieties
%J Sbornik. Mathematics
%D 2021
%P 1765-1784
%V 212
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_12_a5/
%G en
%F SM_2021_212_12_a5
V. V. Cherepanov. Orbit spaces for torus actions on Hessenberg varieties. Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1765-1784. http://geodesic.mathdoc.fr/item/SM_2021_212_12_a5/