Generalization of the Artin-Hasse logarithm for the Milnor $K$-groups of $\delta$-rings
Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1746-1764 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $R$ be a $p$-adically complete ring equipped with a $\delta$-structure. We construct a functorial group homomorphism from the Milnor $K$-group $K^{M}_{n}(R)$ to the quotient of the $p$-adic completion of the module of differential forms $\widehat{\Omega}^{n-1}_{R}/d\widehat{\Omega}^{n-2}_{R}$. This homomorphism is a $p$-adic analogue of the Bloch map defined for the relative Milnor $K$-groups of nilpotent extensions of rings of nilpotency degree $N$ for which the number $N!$ is invertible. Bibliography: 12 titles.
Keywords: Milnor $K$-groups, differential forms, Frobenius lifting.
Mots-clés : $\delta$-structures
@article{SM_2021_212_12_a4,
     author = {D. N. Tyurin},
     title = {Generalization of the {Artin-Hasse} logarithm for the {Milnor} $K$-groups of $\delta$-rings},
     journal = {Sbornik. Mathematics},
     pages = {1746--1764},
     year = {2021},
     volume = {212},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_12_a4/}
}
TY  - JOUR
AU  - D. N. Tyurin
TI  - Generalization of the Artin-Hasse logarithm for the Milnor $K$-groups of $\delta$-rings
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1746
EP  - 1764
VL  - 212
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_12_a4/
LA  - en
ID  - SM_2021_212_12_a4
ER  - 
%0 Journal Article
%A D. N. Tyurin
%T Generalization of the Artin-Hasse logarithm for the Milnor $K$-groups of $\delta$-rings
%J Sbornik. Mathematics
%D 2021
%P 1746-1764
%V 212
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2021_212_12_a4/
%G en
%F SM_2021_212_12_a4
D. N. Tyurin. Generalization of the Artin-Hasse logarithm for the Milnor $K$-groups of $\delta$-rings. Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1746-1764. http://geodesic.mathdoc.fr/item/SM_2021_212_12_a4/

[1] B. Bhatt, P. Scholze, Prisms and prismatic cohomology, arXiv: 1905.08229

[2] S. Bloch, “$K_2$ of Artinian $Q$-algebras, with application to algebraic cycles”, Comm. Algebra, 3:5 (1975), 405–428 | DOI | MR | Zbl

[3] A. Buium, “Arithmetic analogues of derivations”, J. Algebra, 198:1 (1997), 290–299 | DOI | MR | Zbl

[4] T. tom Dieck, “The Artin–Hasse logarithm for $\lambda$-rings”, Algebraic topology (Arcata, CA, 1986), Lecture Notes in Math., 1370, Springer, Berlin, 1989, 409–415 | DOI | MR | Zbl

[5] B. F. Dribus, A Goodwillie-type theorem for Milnor $K$-Theory, arXiv: 1402.2222

[6] S. O. Gorchinskiy, D. N. Tyurin, “Relative Milnor $K$-groups and differential forms of split nilpotent extensions”, Izv. Math., 82:5 (2018), 880–913 | DOI | DOI | MR | Zbl

[7] A. Joyal, “$\delta$-anneaux et vecteurs de Witt”, C. R. Math. Rep. Acad. Sci. Canada, 7:3 (1985), 177–182 | MR | Zbl

[8] W. van der Kallen, “The $K_2$ of rings with many units”, Ann. Sci. École Norm. Sup. (4), 10:4 (1977), 473–515 | DOI | MR | Zbl

[9] K. Kato, “On $p$-adic vanishing cycles (application of ideas of Fontaine–Messing”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 207–251 | DOI | MR | Zbl

[10] K. Kato, “The explicit reciprocity law and the cohomology of Fontaine–Messing”, Bull. Soc. Math. France, 119:4 (1991), 397–441 | DOI | MR | Zbl

[11] H. Maazen, J. Stienstra, “A presentation for $K_2$ of split radical pairs”, J. Pure Appl. Algebra, 10:3 (1977/1978), 271–294 | DOI | MR | Zbl

[12] S. V. Vostokov, “Explicit form of the law of reciprocity”, Math. USSR-Izv., 13:3 (1979), 557–588 | DOI | MR | Zbl