Generalization of the Artin-Hasse logarithm for the Milnor $K$-groups of $\delta$-rings
Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1746-1764

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a $p$-adically complete ring equipped with a $\delta$-structure. We construct a functorial group homomorphism from the Milnor $K$-group $K^{M}_{n}(R)$ to the quotient of the $p$-adic completion of the module of differential forms $\widehat{\Omega}^{n-1}_{R}/d\widehat{\Omega}^{n-2}_{R}$. This homomorphism is a $p$-adic analogue of the Bloch map defined for the relative Milnor $K$-groups of nilpotent extensions of rings of nilpotency degree $N$ for which the number $N!$ is invertible. Bibliography: 12 titles.
Keywords: Milnor $K$-groups, differential forms, Frobenius lifting.
Mots-clés : $\delta$-structures
@article{SM_2021_212_12_a4,
     author = {D. N. Tyurin},
     title = {Generalization of the {Artin-Hasse} logarithm for the {Milnor} $K$-groups of $\delta$-rings},
     journal = {Sbornik. Mathematics},
     pages = {1746--1764},
     publisher = {mathdoc},
     volume = {212},
     number = {12},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_12_a4/}
}
TY  - JOUR
AU  - D. N. Tyurin
TI  - Generalization of the Artin-Hasse logarithm for the Milnor $K$-groups of $\delta$-rings
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1746
EP  - 1764
VL  - 212
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_12_a4/
LA  - en
ID  - SM_2021_212_12_a4
ER  - 
%0 Journal Article
%A D. N. Tyurin
%T Generalization of the Artin-Hasse logarithm for the Milnor $K$-groups of $\delta$-rings
%J Sbornik. Mathematics
%D 2021
%P 1746-1764
%V 212
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_12_a4/
%G en
%F SM_2021_212_12_a4
D. N. Tyurin. Generalization of the Artin-Hasse logarithm for the Milnor $K$-groups of $\delta$-rings. Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1746-1764. http://geodesic.mathdoc.fr/item/SM_2021_212_12_a4/