Uniform approximation of functions by solutions of strongly elliptic equations of second order on compact subsets of~$\mathbb R^2$
Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1730-1745

Voir la notice de l'article provenant de la source Math-Net.Ru

Criteria for the uniform approximation of functions by solutions of second-order strongly elliptic equations on compact subsets of $\mathbb R^2$ are obtained using the method of reduction to similar problems in $\mathbb R^3$, which were previously investigated by Mazalov. A number of metric properties of the capacities used are established. Bibliography: 16 titles.
Keywords: uniform approximation, strongly elliptic equations of second order, Vitushkin-type localization operator, $L$-capacity, method of reduction.
Mots-clés : $L$-oscillation
@article{SM_2021_212_12_a3,
     author = {P. V. Paramonov},
     title = {Uniform approximation of functions by solutions of strongly elliptic equations of second order on compact subsets of~$\mathbb R^2$},
     journal = {Sbornik. Mathematics},
     pages = {1730--1745},
     publisher = {mathdoc},
     volume = {212},
     number = {12},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_12_a3/}
}
TY  - JOUR
AU  - P. V. Paramonov
TI  - Uniform approximation of functions by solutions of strongly elliptic equations of second order on compact subsets of~$\mathbb R^2$
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1730
EP  - 1745
VL  - 212
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_12_a3/
LA  - en
ID  - SM_2021_212_12_a3
ER  - 
%0 Journal Article
%A P. V. Paramonov
%T Uniform approximation of functions by solutions of strongly elliptic equations of second order on compact subsets of~$\mathbb R^2$
%J Sbornik. Mathematics
%D 2021
%P 1730-1745
%V 212
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_12_a3/
%G en
%F SM_2021_212_12_a3
P. V. Paramonov. Uniform approximation of functions by solutions of strongly elliptic equations of second order on compact subsets of~$\mathbb R^2$. Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1730-1745. http://geodesic.mathdoc.fr/item/SM_2021_212_12_a3/