Uniform approximation of functions by solutions of strongly elliptic equations of second order on compact subsets of $\mathbb R^2$
Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1730-1745 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Criteria for the uniform approximation of functions by solutions of second-order strongly elliptic equations on compact subsets of $\mathbb R^2$ are obtained using the method of reduction to similar problems in $\mathbb R^3$, which were previously investigated by Mazalov. A number of metric properties of the capacities used are established. Bibliography: 16 titles.
Keywords: uniform approximation, strongly elliptic equations of second order, Vitushkin-type localization operator, $L$-capacity, method of reduction.
Mots-clés : $L$-oscillation
@article{SM_2021_212_12_a3,
     author = {P. V. Paramonov},
     title = {Uniform approximation of functions by solutions of strongly elliptic equations of second order on compact subsets of~$\mathbb R^2$},
     journal = {Sbornik. Mathematics},
     pages = {1730--1745},
     year = {2021},
     volume = {212},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_12_a3/}
}
TY  - JOUR
AU  - P. V. Paramonov
TI  - Uniform approximation of functions by solutions of strongly elliptic equations of second order on compact subsets of $\mathbb R^2$
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1730
EP  - 1745
VL  - 212
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_12_a3/
LA  - en
ID  - SM_2021_212_12_a3
ER  - 
%0 Journal Article
%A P. V. Paramonov
%T Uniform approximation of functions by solutions of strongly elliptic equations of second order on compact subsets of $\mathbb R^2$
%J Sbornik. Mathematics
%D 2021
%P 1730-1745
%V 212
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2021_212_12_a3/
%G en
%F SM_2021_212_12_a3
P. V. Paramonov. Uniform approximation of functions by solutions of strongly elliptic equations of second order on compact subsets of $\mathbb R^2$. Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1730-1745. http://geodesic.mathdoc.fr/item/SM_2021_212_12_a3/

[1] M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Conditions for $C^m$-approximability of functions by solutions of elliptic equations”, Russian Math. Surveys, 67:6 (2012), 1023–1068 | DOI | DOI | MR | Zbl

[2] P. V. Paramonov, “New criteria for uniform approximability by harmonic functions on compact sets in $\mathbb R^2$”, Proc. Steklov Inst. Math., 298 (2017), 201–211 | DOI | DOI | MR | Zbl

[3] M. Ya. Mazalov, “A criterion for uniform approximability of individual functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients”, Sb. Math., 211:9 (2020), 1267–1309 | DOI | DOI | MR | Zbl

[4] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983, ix+391 pp. | DOI | MR | MR | Zbl | Zbl

[5] J. Verdera, “$C^m$-approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187 | DOI | MR | Zbl

[6] P. V. Paramonov, “Criteria for the individual $C^m$-approximability of functions on compact subsets of $\mathbb R^N$ by solutions of second-order homogeneous elliptic equations”, Sb. Math., 209:6 (2018), 857–870 | DOI | DOI | MR | Zbl

[7] A. G. Vitushkin, “The analytic capacity of sets in problems of approximation theory”, Russian Math. Surveys, 22:6 (1967), 139–200 | DOI | MR | Zbl

[8] M. Ya. Mazalov, “A criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations”, Sb. Math., 199:1-2 (2008), 13–44 | DOI | DOI | MR | Zbl

[9] P. V. Paramonov, “On harmonic approximation in the $C^1$-norm”, Math. USSR-Sb., 71:1 (1992), 183–207 | DOI | MR | Zbl

[10] P. V. Paramonov, K. Yu. Fedorovskiy, “Uniform and $C^1$-approximability of functions on compact subsets of $\mathbb R^2$ by solutions of second-order elliptic equations”, Sb. Math., 190:2 (1999), 285–307 | DOI | DOI | MR | Zbl

[11] P. V. Paramonov, J. Verdera, “Approximation by solutions of elliptic equations on closed subsets of Euclidean space”, Math. Scand., 74:2 (1994), 249–259 | DOI | MR | Zbl

[12] M. V. Keldyš, “On the solvability and stability of the Dirichlet problem”, Amer. Math. Soc. Transl. Ser. 2, 51, Amer. Math. Soc., Providence, RI, 1966, 1–73 | DOI | MR | Zbl

[13] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972, x+424 pp. | MR | MR | Zbl | Zbl

[14] P. V. Paramonov, “Criteria for $C^1$-approximability of functions on compact sets in ${\mathbb{R}}^N$, $N \geq 3$, by solutions of second-order homogeneous elliptic equations”, Izv. Math., 85:3 (2021), 483–505 | DOI | DOI | MR | Zbl

[15] R. Harvey, J. Polking, “Removable singularities of solutions of linear partial differential equations”, Acta Math., 125 (1970), 39–56 | DOI | MR | Zbl

[16] V. Ya. Èiderman, “Estimates for potentials and $\delta$-subharmonic functions outside exceptional sets”, Izv. Math., 61:6 (1997), 1293–1329 | DOI | DOI | MR | Zbl