The polynomial Hermite-Pad\'e $m$-system for meromorphic functions on a~compact Riemann surface
Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1694-1729
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a tuple of $m+1$ germs of arbitrary analytic functions at a fixed point, we introduce the polynomial Hermite-Padé $m$-system, which includes the Hermite-Padé polynomials of types I and II. In the generic case we find the weak asymptotics of the polynomials of the Hermite-Padé $m$-system constructed from the tuple of germs of functions $1, f_1,\dots,f_m$ that are meromorphic on an $(m+1)$-sheeted compact Riemann surface $\mathfrak R$. We show that if $f_j = f^j$ for some meromorphic function $f$ on $\mathfrak R$, then with the help of the ratios of polynomials of the Hermite-Padé $m$-system we recover the values of $f$ on all sheets of the Nuttall partition of $\mathfrak R$, apart from the last sheet.
Bibliography: 18 titles.
Keywords:
rational approximation, Hermite-Padé polynomials, weak asymptotics, Riemann surface.
@article{SM_2021_212_12_a2,
author = {A. V. Komlov},
title = {The polynomial {Hermite-Pad\'e} $m$-system for meromorphic functions on a~compact {Riemann} surface},
journal = {Sbornik. Mathematics},
pages = {1694--1729},
publisher = {mathdoc},
volume = {212},
number = {12},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_12_a2/}
}
TY - JOUR AU - A. V. Komlov TI - The polynomial Hermite-Pad\'e $m$-system for meromorphic functions on a~compact Riemann surface JO - Sbornik. Mathematics PY - 2021 SP - 1694 EP - 1729 VL - 212 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2021_212_12_a2/ LA - en ID - SM_2021_212_12_a2 ER -
A. V. Komlov. The polynomial Hermite-Pad\'e $m$-system for meromorphic functions on a~compact Riemann surface. Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1694-1729. http://geodesic.mathdoc.fr/item/SM_2021_212_12_a2/