Uniqueness theorems for simple trigonometric series with application to multiple series
Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1675-1693

Voir la notice de l'article provenant de la source Math-Net.Ru

For simple trigonometric series it is shown, in particular, that if the trigonometric series is Riemann summable in measure to an integrable function $f$ and if the Riemann majorant is finite everywhere except possibly on a countable set, then this series is the Fourier series of the function $f$. Uniqueness theorems for multiple trigonometric series are obtained on the basis of this result. Bibliography: 14 titles.
Keywords: trigonometric system, Riemann summation method, uniqueness theorem.
@article{SM_2021_212_12_a1,
     author = {G. G. Gevorkyan},
     title = {Uniqueness theorems for simple trigonometric series with application to multiple series},
     journal = {Sbornik. Mathematics},
     pages = {1675--1693},
     publisher = {mathdoc},
     volume = {212},
     number = {12},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_12_a1/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - Uniqueness theorems for simple trigonometric series with application to multiple series
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1675
EP  - 1693
VL  - 212
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_12_a1/
LA  - en
ID  - SM_2021_212_12_a1
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T Uniqueness theorems for simple trigonometric series with application to multiple series
%J Sbornik. Mathematics
%D 2021
%P 1675-1693
%V 212
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_12_a1/
%G en
%F SM_2021_212_12_a1
G. G. Gevorkyan. Uniqueness theorems for simple trigonometric series with application to multiple series. Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1675-1693. http://geodesic.mathdoc.fr/item/SM_2021_212_12_a1/