Topological type of isoenergy surfaces of billiard books
Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1660-1674
Voir la notice de l'article provenant de la source Math-Net.Ru
The homeomorphism class of the isoenergy surface of a billiard book, of low complexity and not necessarily integrable, is determined using methods of low-dimensional topology. In particular, a series of billiard books is constructed that realize isoenergy 3-surfaces homeomorphic to the connected sum of a number of lens spaces and direct products $S^1\times S^2$.
The Fomenko-Zieschang invariants, which classify Liouville foliations on isoenergy surfaces up to fibrewise homeomorphisms – that is, up to Liouville equivalence of the corresponding integrable Hamiltonian systems – are calculated for several integrable billiards of this type.
Bibliography: 14 titles.
Keywords:
integrable system
Mots-clés : billiard book, Liouville equivalence, Fomenko-Zieschang invariant.
Mots-clés : billiard book, Liouville equivalence, Fomenko-Zieschang invariant.
@article{SM_2021_212_12_a0,
author = {V. V. Vedyushkina},
title = {Topological type of isoenergy surfaces of billiard books},
journal = {Sbornik. Mathematics},
pages = {1660--1674},
publisher = {mathdoc},
volume = {212},
number = {12},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_12_a0/}
}
V. V. Vedyushkina. Topological type of isoenergy surfaces of billiard books. Sbornik. Mathematics, Tome 212 (2021) no. 12, pp. 1660-1674. http://geodesic.mathdoc.fr/item/SM_2021_212_12_a0/