Mots-clés : two-point Padé approximants, $S$-contours
@article{SM_2021_212_11_a6,
author = {M. L. Yattselev},
title = {Convergence of two-point {Pad\'e} approximants to piecewise holomorphic functions},
journal = {Sbornik. Mathematics},
pages = {1626--1659},
year = {2021},
volume = {212},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_11_a6/}
}
M. L. Yattselev. Convergence of two-point Padé approximants to piecewise holomorphic functions. Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1626-1659. http://geodesic.mathdoc.fr/item/SM_2021_212_11_a6/
[1] A. I. Aptekarev, M. L. Yattselev, “Padé approximants for functions with branch points – strong asymptotics of Nuttall–Stahl polynomials”, Acta Math., 215:2 (2015), 217–280 | DOI | MR | Zbl
[2] L. Baratchart, H. Stahl, M. Yattselev, “Weighted extremal domains and best rational approximation”, Adv. Math., 229:1 (2012), 357–407 | DOI | MR | Zbl
[3] L. Baratchart, M. Yattselev, “Convergent interpolation to Cauchy integrals over analytic arcs”, Found. Comput. Math., 9:6 (2009), 675–715 | DOI | MR | Zbl
[4] L. Baratchart, M. Yattselev, “Convergent interpolation to Cauchy integrals over analytic arcs with Jacobi-type weights”, Int. Math. Res. Not. IMRN, 2010:22 (2010), 4211–4275 | DOI | MR | Zbl
[5] V. I. Buslaev, “Convergence of multipoint Padé approximants of piecewise analytic functions”, Sb. Math., 204:2 (2013), 190–222 | DOI | DOI | MR | Zbl
[6] V. I. Buslaev, “Convergence of $m$-point Padé approximants of a tuple of multivalued analytic functions”, Sb. Math., 206:2 (2015), 175–200 | DOI | DOI | MR | Zbl
[7] P. Deift, Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, Courant Inst. Math. Sci., New York; Amer. Math. Soc., Providence, RI, 2000, viii+273 pp. | DOI | MR | Zbl
[8] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Strong asymptotics of orthogonal polynomials with respect to exponential weights”, Comm. Pure Appl. Math., 52:12 (1999), 1491–1552 | MR | Zbl
[9] P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368 | DOI | MR | Zbl
[10] A. S. Fokas, A. R. Its, A. V. Kitaev, “Discrete Panlevé equations and their appearance in quantum gravity”, Comm. Math. Phys., 142:2 (1991), 313–344 | DOI | MR | Zbl
[11] A. S. Fokas, A. R. Its, A. V. Kitaev, “The isomonodromy approach to matrix models in $2D$ quantum gravitaty”, Comm. Math. Phys., 147:2 (1992), 395–430 | DOI | MR | Zbl
[12] F. D. Gakhov, Boundary value problems, Pergamon Press, Oxford–New York–Paris; Addison-Wesley Publishing Co., Inc., Reading, MA–London, 1966, xix+561 pp. | MR | MR | Zbl | Zbl
[13] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl
[14] A. B. Kuijlaars, K. T.-R. McLaughlin, W. Van Assche, M. Vanlessen, “The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on $[-1,1]$”, Adv. Math., 188:2 (2004), 337–398 | DOI | MR | Zbl
[15] G. López, “Szegő's theorem for polynomials orthogonal with respect to varying measures”, Orthogonal polynomials and their applications (Segovia, 1986), Lecture Notes in Math., 1329, Spinger, Berlin, 1988, 255–260 | DOI | MR | Zbl
[16] E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 | DOI | MR | Zbl
[17] T. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995, x+232 pp. | DOI | MR | Zbl
[18] H. Stahl, “Extremal domains associated with an analytic function. I”, Complex Variables Theory Appl., 4:4 (1985), 311–324 | DOI | MR | Zbl
[19] H. Stahl, “Extremal domains associated with an analytic function. II”, Complex Variables Theory Appl., 4:4 (1985), 325–338 | DOI | MR | Zbl
[20] H. Stahl, “The structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4:4 (1985), 339–354 | DOI | MR | Zbl
[21] H. Stahl, “Orthogonal polynomials with complex-valued weight function. I”, Constr. Approx., 2:3 (1986), 225–240 | DOI | MR | Zbl
[22] H. Stahl, “Orthogonal polynomials with complex-valued weight function. II”, Constr. Approx., 2:3 (1986), 241–251 | DOI | MR | Zbl
[23] H. Stahl, “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl
[24] H. Stahl, “Strong asymptotics for orthonormal polynomials with varying weights”, Acta Sci. Math. (Szeged), 66:1-2 (2000), 147–192 | MR | Zbl
[25] M. L. Yattselev, “Symmetric contours and convergent interpolation”, J. Approx. Theory, 225 (2018), 76–105 | DOI | MR | Zbl
[26] È. I. Zverovich, “Boundary value problems in the theory of analytic functions in Hölder classes on Riemann surfaces”, Russian Math. Surveys, 26:1 (1971), 117–192 | DOI | MR | Zbl