Mots-clés : Liouville's theorem.
@article{SM_2021_212_11_a5,
author = {B. N. Khabibullin},
title = {Global boundedness of functions of finite order that are bounded outside small sets},
journal = {Sbornik. Mathematics},
pages = {1615--1625},
year = {2021},
volume = {212},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_11_a5/}
}
B. N. Khabibullin. Global boundedness of functions of finite order that are bounded outside small sets. Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1615-1625. http://geodesic.mathdoc.fr/item/SM_2021_212_11_a5/
[1] T. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995, x+232 pp. | DOI | MR | Zbl
[2] W. K. Hayman, P. B. Kennedy, Subharmonic functions, v. I, London Math. Soc. Monogr., 9, Academic Press, London–New York, 1976, xvii+284 pp. | MR | MR | Zbl | Zbl
[3] L. Hörmander, Notions of convexity, Progr. Math., 127, Birkhäuser Boston, Inc., Boston, MA, 1994, viii+414 pp. | MR | Zbl
[4] S. Axler, P. Bourdon, W. Ramey, Harmonic function theory, Grad. Texts in Math., 137, 2nd ed., Springer-Verlag, New York, 2001, xii+259 pp. | DOI | MR | Zbl
[5] A. Baranov, Yu. Belov, A. Borichev, “Summability properties of Gabor expansions”, J. Funct. Anal., 274:9 (2018), 2532–2552 | DOI | MR | Zbl
[6] A. Baranov, Y. Belov, A. Borichev, Summability properties of Gabor expansions, 2018, arXiv: 1706.05685v2
[7] Y. Belov, A. Borichev, The Newman–Shapiro problem, 2018, arXiv: 1711.06901v2
[8] A. Aleman, A. Baranov, Y. Belov, H. Hedenmalm, Backward shift and nearly invariant subspaces of Fock-type spaces, 2020, arXiv: 2007.06107
[9] B. N. Khabibullin, K teoreme Liuvillya dlya tselykh funktsii konechnogo poryadka, 2020, arXiv: 2009.01019
[10] B. N. Khabibullin, Teoremy tipa Liuvillya vne malykh isklyuchitelnykh mnozhestv dlya funktsii konechnogo poryadka, 2020, arXiv: 2009.01447
[11] B. N. Khabibullin, “Liouville-type theorems for functions of finite order”, Ufa Math. J., 12:4 (2020), 114–118 | DOI | MR | Zbl
[12] B. N. Khabibullin, A. V. Shmelyova, “Balayage of measures and subharmonic functions on a system of rays. I. The classic case”, St. Petersburg Math. J., 31:1 (2020), 117–156 | DOI | MR | Zbl
[13] A. F. Beardon, “Integral means of subharmonic functions”, Proc. Cambridge Philos. Soc., 69:1 (1971), 151–152 | DOI | MR | Zbl
[14] P. Freitas, J. P. Matos, “On the characterization of harmonic and subharmonic functions via mean-value properties”, Potential Anal., 32 (2010), 189–200 | DOI | MR | Zbl