Global boundedness of functions of finite order that are bounded outside small sets
Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1615-1625 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that subharmonic or holomorphic functions of finite order on the plane, in space, or on the unit disc or ball that are bounded above on a sequence of circles or spheres, or on a system of embedded discs or balls, outside some asymptotically small sets are bounded above throughout. Hence, subharmonic functions of finite order on the complex plane, entire or plurisubharmonic functions of finite order, and also convex or harmonic functions of finite order that are bounded above on spheres outside such sets are constants. The results and the approaches to the proofs are new for both functions of one and several variables. Bibliography: 14 titles.
Keywords: entire function of finite order, (pluri)subharmonic function, holomorphic function in the unit ball, convex function
Mots-clés : Liouville's theorem.
@article{SM_2021_212_11_a5,
     author = {B. N. Khabibullin},
     title = {Global boundedness of functions of finite order that are bounded outside small sets},
     journal = {Sbornik. Mathematics},
     pages = {1615--1625},
     year = {2021},
     volume = {212},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_11_a5/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Global boundedness of functions of finite order that are bounded outside small sets
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1615
EP  - 1625
VL  - 212
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_11_a5/
LA  - en
ID  - SM_2021_212_11_a5
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Global boundedness of functions of finite order that are bounded outside small sets
%J Sbornik. Mathematics
%D 2021
%P 1615-1625
%V 212
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2021_212_11_a5/
%G en
%F SM_2021_212_11_a5
B. N. Khabibullin. Global boundedness of functions of finite order that are bounded outside small sets. Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1615-1625. http://geodesic.mathdoc.fr/item/SM_2021_212_11_a5/

[1] T. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995, x+232 pp. | DOI | MR | Zbl

[2] W. K. Hayman, P. B. Kennedy, Subharmonic functions, v. I, London Math. Soc. Monogr., 9, Academic Press, London–New York, 1976, xvii+284 pp. | MR | MR | Zbl | Zbl

[3] L. Hörmander, Notions of convexity, Progr. Math., 127, Birkhäuser Boston, Inc., Boston, MA, 1994, viii+414 pp. | MR | Zbl

[4] S. Axler, P. Bourdon, W. Ramey, Harmonic function theory, Grad. Texts in Math., 137, 2nd ed., Springer-Verlag, New York, 2001, xii+259 pp. | DOI | MR | Zbl

[5] A. Baranov, Yu. Belov, A. Borichev, “Summability properties of Gabor expansions”, J. Funct. Anal., 274:9 (2018), 2532–2552 | DOI | MR | Zbl

[6] A. Baranov, Y. Belov, A. Borichev, Summability properties of Gabor expansions, 2018, arXiv: 1706.05685v2

[7] Y. Belov, A. Borichev, The Newman–Shapiro problem, 2018, arXiv: 1711.06901v2

[8] A. Aleman, A. Baranov, Y. Belov, H. Hedenmalm, Backward shift and nearly invariant subspaces of Fock-type spaces, 2020, arXiv: 2007.06107

[9] B. N. Khabibullin, K teoreme Liuvillya dlya tselykh funktsii konechnogo poryadka, 2020, arXiv: 2009.01019

[10] B. N. Khabibullin, Teoremy tipa Liuvillya vne malykh isklyuchitelnykh mnozhestv dlya funktsii konechnogo poryadka, 2020, arXiv: 2009.01447

[11] B. N. Khabibullin, “Liouville-type theorems for functions of finite order”, Ufa Math. J., 12:4 (2020), 114–118 | DOI | MR | Zbl

[12] B. N. Khabibullin, A. V. Shmelyova, “Balayage of measures and subharmonic functions on a system of rays. I. The classic case”, St. Petersburg Math. J., 31:1 (2020), 117–156 | DOI | MR | Zbl

[13] A. F. Beardon, “Integral means of subharmonic functions”, Proc. Cambridge Philos. Soc., 69:1 (1971), 151–152 | DOI | MR | Zbl

[14] P. Freitas, J. P. Matos, “On the characterization of harmonic and subharmonic functions via mean-value properties”, Potential Anal., 32 (2010), 189–200 | DOI | MR | Zbl