Estimates for the volume of the zeros of a~holomorphic function depending on a~complex parameter
Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1608-1614
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a holomorphic function $f(\sigma,z)$, $\sigma\in\mathbb{C}^{m}$, $z\in\mathbb{C}^{n}$, an estimate for the volume of the zero set $\{z\colon f(\sigma,z)=0\}$ is presented which holds uniformly in $\sigma $. Such estimates are quite useful in investigations of oscillatory integrals of the form $$ J(\lambda,\sigma)=\int_{\mathbb{R}^{n} }a(\sigma, x)e^{i\lambda \Phi (\sigma, x)}\,dx $$ as $\lambda \to \infty $. Here $a(\sigma, x)\in C_{0}^{\infty } (\mathbb{R}^{n} \times\mathbb{R}^{m})$ is a so-called amplitude function and $\Phi (\sigma, x)$ is a phase function.
Bibliography: 9 titles.
Keywords:
Weierstrass's preparation theorem, analytic set, regular point, volume of an analytic set, Wirtinger's theorem.
@article{SM_2021_212_11_a4,
author = {A. M. Kytmanov and A. Sadullaev},
title = {Estimates for the volume of the zeros of a~holomorphic function depending on a~complex parameter},
journal = {Sbornik. Mathematics},
pages = {1608--1614},
publisher = {mathdoc},
volume = {212},
number = {11},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_11_a4/}
}
TY - JOUR AU - A. M. Kytmanov AU - A. Sadullaev TI - Estimates for the volume of the zeros of a~holomorphic function depending on a~complex parameter JO - Sbornik. Mathematics PY - 2021 SP - 1608 EP - 1614 VL - 212 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2021_212_11_a4/ LA - en ID - SM_2021_212_11_a4 ER -
%0 Journal Article %A A. M. Kytmanov %A A. Sadullaev %T Estimates for the volume of the zeros of a~holomorphic function depending on a~complex parameter %J Sbornik. Mathematics %D 2021 %P 1608-1614 %V 212 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2021_212_11_a4/ %G en %F SM_2021_212_11_a4
A. M. Kytmanov; A. Sadullaev. Estimates for the volume of the zeros of a~holomorphic function depending on a~complex parameter. Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1608-1614. http://geodesic.mathdoc.fr/item/SM_2021_212_11_a4/