Estimates for the volume of the zeros of a~holomorphic function depending on a~complex parameter
Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1608-1614

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a holomorphic function $f(\sigma,z)$, $\sigma\in\mathbb{C}^{m}$, $z\in\mathbb{C}^{n}$, an estimate for the volume of the zero set $\{z\colon f(\sigma,z)=0\}$ is presented which holds uniformly in $\sigma $. Such estimates are quite useful in investigations of oscillatory integrals of the form $$ J(\lambda,\sigma)=\int_{\mathbb{R}^{n} }a(\sigma, x)e^{i\lambda \Phi (\sigma, x)}\,dx $$ as $\lambda \to \infty $. Here $a(\sigma, x)\in C_{0}^{\infty } (\mathbb{R}^{n} \times\mathbb{R}^{m})$ is a so-called amplitude function and $\Phi (\sigma, x)$ is a phase function. Bibliography: 9 titles.
Keywords: Weierstrass's preparation theorem, analytic set, regular point, volume of an analytic set, Wirtinger's theorem.
@article{SM_2021_212_11_a4,
     author = {A. M. Kytmanov and A. Sadullaev},
     title = {Estimates for the volume of the zeros of a~holomorphic function depending on a~complex parameter},
     journal = {Sbornik. Mathematics},
     pages = {1608--1614},
     publisher = {mathdoc},
     volume = {212},
     number = {11},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_11_a4/}
}
TY  - JOUR
AU  - A. M. Kytmanov
AU  - A. Sadullaev
TI  - Estimates for the volume of the zeros of a~holomorphic function depending on a~complex parameter
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1608
EP  - 1614
VL  - 212
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_11_a4/
LA  - en
ID  - SM_2021_212_11_a4
ER  - 
%0 Journal Article
%A A. M. Kytmanov
%A A. Sadullaev
%T Estimates for the volume of the zeros of a~holomorphic function depending on a~complex parameter
%J Sbornik. Mathematics
%D 2021
%P 1608-1614
%V 212
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_11_a4/
%G en
%F SM_2021_212_11_a4
A. M. Kytmanov; A. Sadullaev. Estimates for the volume of the zeros of a~holomorphic function depending on a~complex parameter. Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1608-1614. http://geodesic.mathdoc.fr/item/SM_2021_212_11_a4/