@article{SM_2021_212_11_a4,
author = {A. M. Kytmanov and A. Sadullaev},
title = {Estimates for the volume of the zeros of a~holomorphic function depending on a~complex parameter},
journal = {Sbornik. Mathematics},
pages = {1608--1614},
year = {2021},
volume = {212},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_11_a4/}
}
TY - JOUR AU - A. M. Kytmanov AU - A. Sadullaev TI - Estimates for the volume of the zeros of a holomorphic function depending on a complex parameter JO - Sbornik. Mathematics PY - 2021 SP - 1608 EP - 1614 VL - 212 IS - 11 UR - http://geodesic.mathdoc.fr/item/SM_2021_212_11_a4/ LA - en ID - SM_2021_212_11_a4 ER -
A. M. Kytmanov; A. Sadullaev. Estimates for the volume of the zeros of a holomorphic function depending on a complex parameter. Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1608-1614. http://geodesic.mathdoc.fr/item/SM_2021_212_11_a4/
[1] W. F. Osgood, Lehrbuch der Funktionentheorie, v. II, Part 1, 2. Aufl., Teubner, Leipzig, 1929, viii+307 pp. | Zbl
[2] V. I. Arnol'd, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps, v. I, Monogr. Math., 82, The classification of critical points, caustics and wave fronts, Birkhäuser Boston, Inc., Boston, MA, 1985, xi+382 pp. | DOI | MR | MR | Zbl | Zbl
[3] I. A. Ikromov, “Damped oscillatory integrals and maximal operators”, Math. Notes, 78:6 (2005), 773–790 | DOI | DOI | MR | Zbl
[4] I. A. Ikromov, Sh. A. Muranov, “Estimates of oscillatory integrals with a damping factor”, Math. Notes, 104:2 (2018), 218–230 | DOI | DOI | MR | Zbl
[5] A. Sadullaev, “Criteria for analytic sets to be algebraic”, Funct. Anal. Appl., 6:1 (1972), 78–79 | DOI | MR | Zbl
[6] M. Hervé, Several complex variables. Local theory, Oxford Univ. Press, London, 1963, vii+134 pp. | MR | MR | Zbl | Zbl
[7] B. V. Shabat, Introduction to complex analysis, v. II, Transl. Math. Monogr., 110, Functions of several variables, Amer. Math. Soc., Providence, RI, 1992, x+371 pp. | DOI | MR | MR | Zbl | Zbl
[8] A. M. Kytmanov, The Bochner–Martinelli integral and its applications, Birkhäuser, Basel, 1995, xi+305 pp. | MR | Zbl | Zbl
[9] E. M. Chirka, Complex analytic sets, Math. Appl. (Soviet Ser.), 46, Kluwer Acad. Publ., Dordrecht, 1989, xx+372 pp. | DOI | MR | MR | Zbl | Zbl