Estimates for the volume of the zeros of a holomorphic function depending on a complex parameter
Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1608-1614 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a holomorphic function $f(\sigma,z)$, $\sigma\in\mathbb{C}^{m}$, $z\in\mathbb{C}^{n}$, an estimate for the volume of the zero set $\{z\colon f(\sigma,z)=0\}$ is presented which holds uniformly in $\sigma $. Such estimates are quite useful in investigations of oscillatory integrals of the form $$ J(\lambda,\sigma)=\int_{\mathbb{R}^{n} }a(\sigma, x)e^{i\lambda \Phi (\sigma, x)}\,dx $$ as $\lambda \to \infty $. Here $a(\sigma, x)\in C_{0}^{\infty } (\mathbb{R}^{n} \times\mathbb{R}^{m})$ is a so-called amplitude function and $\Phi (\sigma, x)$ is a phase function. Bibliography: 9 titles.
Keywords: Weierstrass's preparation theorem, analytic set, regular point, volume of an analytic set, Wirtinger's theorem.
@article{SM_2021_212_11_a4,
     author = {A. M. Kytmanov and A. Sadullaev},
     title = {Estimates for the volume of the zeros of a~holomorphic function depending on a~complex parameter},
     journal = {Sbornik. Mathematics},
     pages = {1608--1614},
     year = {2021},
     volume = {212},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_11_a4/}
}
TY  - JOUR
AU  - A. M. Kytmanov
AU  - A. Sadullaev
TI  - Estimates for the volume of the zeros of a holomorphic function depending on a complex parameter
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1608
EP  - 1614
VL  - 212
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_11_a4/
LA  - en
ID  - SM_2021_212_11_a4
ER  - 
%0 Journal Article
%A A. M. Kytmanov
%A A. Sadullaev
%T Estimates for the volume of the zeros of a holomorphic function depending on a complex parameter
%J Sbornik. Mathematics
%D 2021
%P 1608-1614
%V 212
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2021_212_11_a4/
%G en
%F SM_2021_212_11_a4
A. M. Kytmanov; A. Sadullaev. Estimates for the volume of the zeros of a holomorphic function depending on a complex parameter. Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1608-1614. http://geodesic.mathdoc.fr/item/SM_2021_212_11_a4/

[1] W. F. Osgood, Lehrbuch der Funktionentheorie, v. II, Part 1, 2. Aufl., Teubner, Leipzig, 1929, viii+307 pp. | Zbl

[2] V. I. Arnol'd, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps, v. I, Monogr. Math., 82, The classification of critical points, caustics and wave fronts, Birkhäuser Boston, Inc., Boston, MA, 1985, xi+382 pp. | DOI | MR | MR | Zbl | Zbl

[3] I. A. Ikromov, “Damped oscillatory integrals and maximal operators”, Math. Notes, 78:6 (2005), 773–790 | DOI | DOI | MR | Zbl

[4] I. A. Ikromov, Sh. A. Muranov, “Estimates of oscillatory integrals with a damping factor”, Math. Notes, 104:2 (2018), 218–230 | DOI | DOI | MR | Zbl

[5] A. Sadullaev, “Criteria for analytic sets to be algebraic”, Funct. Anal. Appl., 6:1 (1972), 78–79 | DOI | MR | Zbl

[6] M. Hervé, Several complex variables. Local theory, Oxford Univ. Press, London, 1963, vii+134 pp. | MR | MR | Zbl | Zbl

[7] B. V. Shabat, Introduction to complex analysis, v. II, Transl. Math. Monogr., 110, Functions of several variables, Amer. Math. Soc., Providence, RI, 1992, x+371 pp. | DOI | MR | MR | Zbl | Zbl

[8] A. M. Kytmanov, The Bochner–Martinelli integral and its applications, Birkhäuser, Basel, 1995, xi+305 pp. | MR | Zbl | Zbl

[9] E. M. Chirka, Complex analytic sets, Math. Appl. (Soviet Ser.), 46, Kluwer Acad. Publ., Dordrecht, 1989, xx+372 pp. | DOI | MR | MR | Zbl | Zbl