On optimal recovery of values of linear operators from information known with a~stochastic error
Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1588-1607
Voir la notice de l'article provenant de la source Math-Net.Ru
The optimal recovery of values of linear operators is considered for classes of elements the information on which is known with a stochastic error. Linear optimal recovery methods are constructed that, in general, do not use all the available information for the measurements. As a consequence, an optimal method is described for recovering a function from a finite set of its Fourier coefficients specified with a stochastic error.
Bibliography: 14 titles.
Keywords:
optimal recovery, minimax estimation, extremal problem, linear operator.
Mots-clés : Fourier coefficients
Mots-clés : Fourier coefficients
@article{SM_2021_212_11_a3,
author = {K. Yu. Krivosheev},
title = {On optimal recovery of values of linear operators from information known with a~stochastic error},
journal = {Sbornik. Mathematics},
pages = {1588--1607},
publisher = {mathdoc},
volume = {212},
number = {11},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_11_a3/}
}
TY - JOUR AU - K. Yu. Krivosheev TI - On optimal recovery of values of linear operators from information known with a~stochastic error JO - Sbornik. Mathematics PY - 2021 SP - 1588 EP - 1607 VL - 212 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2021_212_11_a3/ LA - en ID - SM_2021_212_11_a3 ER -
K. Yu. Krivosheev. On optimal recovery of values of linear operators from information known with a~stochastic error. Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1588-1607. http://geodesic.mathdoc.fr/item/SM_2021_212_11_a3/