A~probability estimate for the discrepancy of Korobov lattice points
Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1571-1587

Voir la notice de l'article provenant de la source Math-Net.Ru

Bykovskii (2002) obtained the best current upper estimate for the minimum discrepancy of the Korobov lattice points from the uniform distribution. We show that this estimate holds for almost all $s$-dimensional Korobov lattices of $N$ nodes, where $s\geqslant 3$, and $N$ is a prime number. Bibliography: 14 titles.
Keywords: Korobov lattice, uniform distribution, discrepancy from the uniform distribution, sums over sublattices.
@article{SM_2021_212_11_a2,
     author = {A. A. Illarionov},
     title = {A~probability estimate for the discrepancy of {Korobov} lattice points},
     journal = {Sbornik. Mathematics},
     pages = {1571--1587},
     publisher = {mathdoc},
     volume = {212},
     number = {11},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_11_a2/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - A~probability estimate for the discrepancy of Korobov lattice points
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1571
EP  - 1587
VL  - 212
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_11_a2/
LA  - en
ID  - SM_2021_212_11_a2
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T A~probability estimate for the discrepancy of Korobov lattice points
%J Sbornik. Mathematics
%D 2021
%P 1571-1587
%V 212
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_11_a2/
%G en
%F SM_2021_212_11_a2
A. A. Illarionov. A~probability estimate for the discrepancy of Korobov lattice points. Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1571-1587. http://geodesic.mathdoc.fr/item/SM_2021_212_11_a2/