A probability estimate for the discrepancy of Korobov lattice points
Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1571-1587 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Bykovskii (2002) obtained the best current upper estimate for the minimum discrepancy of the Korobov lattice points from the uniform distribution. We show that this estimate holds for almost all $s$-dimensional Korobov lattices of $N$ nodes, where $s\geqslant 3$, and $N$ is a prime number. Bibliography: 14 titles.
Keywords: Korobov lattice, uniform distribution, discrepancy from the uniform distribution, sums over sublattices.
@article{SM_2021_212_11_a2,
     author = {A. A. Illarionov},
     title = {A~probability estimate for the discrepancy of {Korobov} lattice points},
     journal = {Sbornik. Mathematics},
     pages = {1571--1587},
     year = {2021},
     volume = {212},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_11_a2/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - A probability estimate for the discrepancy of Korobov lattice points
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1571
EP  - 1587
VL  - 212
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_11_a2/
LA  - en
ID  - SM_2021_212_11_a2
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T A probability estimate for the discrepancy of Korobov lattice points
%J Sbornik. Mathematics
%D 2021
%P 1571-1587
%V 212
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2021_212_11_a2/
%G en
%F SM_2021_212_11_a2
A. A. Illarionov. A probability estimate for the discrepancy of Korobov lattice points. Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1571-1587. http://geodesic.mathdoc.fr/item/SM_2021_212_11_a2/

[1] M. Drmota, R. F. Tichy, Sequences, discrepancies and applications, Lecture Notes in Math., 1651, Springer-Verlag, Berlin, 1997, xiv+503 pp. | DOI | MR | Zbl

[2] L. Kuipers, H. Niederreiter, Uniform distribution of sequences, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York–London–Sydney, 1974, xiv+390 pp. | MR | MR | Zbl | Zbl

[3] N. M. Korobov, “O priblizhennom vychislenii kratnykh integralov”, Dokl. AN SSSR, 124:6 (1959), 1207–1210 | MR | Zbl

[4] E. Hlawka, “Zur angenäherten Berechnung mehrfacher Integrale”, Monatsh. Math., 66:2 (1962), 140–151 | DOI | MR | Zbl

[5] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, 2-e izd., MTsNMO, M., 2004, 285 pp. | MR | Zbl

[6] H. Niederreiter, “Existence of good lattice points in the sense of Hlawka”, Monatsh. Math., 86:3 (1978), 203–219 | DOI | MR | Zbl

[7] G. Larcher, “On the distribution of sequences connected with good lattice points”, Monatsh. Math., 101:2 (1986), 135–150 | DOI | MR | Zbl

[8] V. A. Bykovskii, “The discrepancy of the Korobov lattice points”, Izv. Math., 76:3 (2012), 446–465 | DOI | DOI | MR | Zbl

[9] W. M. Schmidt, “Irregularities of distribution. VII”, Acta Arith., 21 (1972), 45–50 | DOI | MR | Zbl

[10] J. Beck, “A two-dimensional van Aardenne–Ehrenfest theorem in irregularities of distribution”, Compositio Math., 72:3 (1989), 269–339 | MR | Zbl

[11] K. F. Roth, “On irregularities of distribution”, Mathematika, 1:2 (1954), 73–79 | DOI | MR | Zbl

[12] D. Bilyk, M. T. Lacey, A. Vagharshakyan, “On the small ball inequality in all dimensions”, J. Funct. Anal., 254:9 (2008), 2470–2502 | DOI | MR | Zbl

[13] M. G. Rukavishnikova, “The law of large numbers for the sum of the partial quotients of a rational number with fixed denominator”, Math. Notes, 90:3 (2011), 418–430 | DOI | DOI | MR | Zbl

[14] N. S. Bakhvalov, “O priblizhennom vychislenii kratnykh integralov”, Vestn. Mosk. un-ta. Ser. Matem., mekh., astronom., fiz., khim., 1959, no. 4, 3–18 | MR | Zbl