A~probability estimate for the discrepancy of Korobov lattice points
Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1571-1587
Voir la notice de l'article provenant de la source Math-Net.Ru
Bykovskii (2002) obtained the best current upper estimate for the minimum discrepancy of the Korobov lattice points from the uniform distribution. We show that this estimate holds for almost all $s$-dimensional Korobov lattices of $N$ nodes, where $s\geqslant 3$, and $N$ is a prime number.
Bibliography: 14 titles.
Keywords:
Korobov lattice, uniform distribution, discrepancy from the uniform distribution, sums over sublattices.
@article{SM_2021_212_11_a2,
author = {A. A. Illarionov},
title = {A~probability estimate for the discrepancy of {Korobov} lattice points},
journal = {Sbornik. Mathematics},
pages = {1571--1587},
publisher = {mathdoc},
volume = {212},
number = {11},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_11_a2/}
}
A. A. Illarionov. A~probability estimate for the discrepancy of Korobov lattice points. Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1571-1587. http://geodesic.mathdoc.fr/item/SM_2021_212_11_a2/