@article{SM_2021_212_11_a2,
author = {A. A. Illarionov},
title = {A~probability estimate for the discrepancy of {Korobov} lattice points},
journal = {Sbornik. Mathematics},
pages = {1571--1587},
year = {2021},
volume = {212},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_11_a2/}
}
A. A. Illarionov. A probability estimate for the discrepancy of Korobov lattice points. Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1571-1587. http://geodesic.mathdoc.fr/item/SM_2021_212_11_a2/
[1] M. Drmota, R. F. Tichy, Sequences, discrepancies and applications, Lecture Notes in Math., 1651, Springer-Verlag, Berlin, 1997, xiv+503 pp. | DOI | MR | Zbl
[2] L. Kuipers, H. Niederreiter, Uniform distribution of sequences, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York–London–Sydney, 1974, xiv+390 pp. | MR | MR | Zbl | Zbl
[3] N. M. Korobov, “O priblizhennom vychislenii kratnykh integralov”, Dokl. AN SSSR, 124:6 (1959), 1207–1210 | MR | Zbl
[4] E. Hlawka, “Zur angenäherten Berechnung mehrfacher Integrale”, Monatsh. Math., 66:2 (1962), 140–151 | DOI | MR | Zbl
[5] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, 2-e izd., MTsNMO, M., 2004, 285 pp. | MR | Zbl
[6] H. Niederreiter, “Existence of good lattice points in the sense of Hlawka”, Monatsh. Math., 86:3 (1978), 203–219 | DOI | MR | Zbl
[7] G. Larcher, “On the distribution of sequences connected with good lattice points”, Monatsh. Math., 101:2 (1986), 135–150 | DOI | MR | Zbl
[8] V. A. Bykovskii, “The discrepancy of the Korobov lattice points”, Izv. Math., 76:3 (2012), 446–465 | DOI | DOI | MR | Zbl
[9] W. M. Schmidt, “Irregularities of distribution. VII”, Acta Arith., 21 (1972), 45–50 | DOI | MR | Zbl
[10] J. Beck, “A two-dimensional van Aardenne–Ehrenfest theorem in irregularities of distribution”, Compositio Math., 72:3 (1989), 269–339 | MR | Zbl
[11] K. F. Roth, “On irregularities of distribution”, Mathematika, 1:2 (1954), 73–79 | DOI | MR | Zbl
[12] D. Bilyk, M. T. Lacey, A. Vagharshakyan, “On the small ball inequality in all dimensions”, J. Funct. Anal., 254:9 (2008), 2470–2502 | DOI | MR | Zbl
[13] M. G. Rukavishnikova, “The law of large numbers for the sum of the partial quotients of a rational number with fixed denominator”, Math. Notes, 90:3 (2011), 418–430 | DOI | DOI | MR | Zbl
[14] N. S. Bakhvalov, “O priblizhennom vychislenii kratnykh integralov”, Vestn. Mosk. un-ta. Ser. Matem., mekh., astronom., fiz., khim., 1959, no. 4, 3–18 | MR | Zbl