Mots-clés : Marcinkiewicz space, orthogonal element.
@article{SM_2021_212_11_a1,
author = {S. V. Astashkin and E. M. Semenov},
title = {Orthogonality in nonseparable rearrangement-invariant spaces},
journal = {Sbornik. Mathematics},
pages = {1553--1570},
year = {2021},
volume = {212},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_11_a1/}
}
S. V. Astashkin; E. M. Semenov. Orthogonality in nonseparable rearrangement-invariant spaces. Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1553-1570. http://geodesic.mathdoc.fr/item/SM_2021_212_11_a1/
[1] G. Birkhoff, “Orthogonality in linear metric spaces”, Duke Math. J., 1:2 (1935), 169–172 | DOI | MR | Zbl
[2] B. D. Roberts, “On the geometry of abstract vector spaces”, Tôhoku Math. J., 39 (1934), 42–59 | Zbl
[3] R. C. James, “Orthogonality in normed linear spaces”, Duke Math. J., 12:2 (1945), 291–302 | DOI | MR | Zbl
[4] E. W. Cheney, D. E. Wulbert, “The existence and unicity of best approximations”, Math. Scand., 24:1 (1969), 113–140 | DOI | MR | Zbl
[5] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Grundlehren Math. Wiss., 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York–Berlin, 1970, 415 pp. | DOI | MR | Zbl
[6] P. A. Borodin, “Quasiorthogonal sets and conditions for a Banach space to be a Hilbert space”, Sb. Math., 188:8 (1997), 1171–1182 | DOI | DOI | MR | Zbl
[7] F. B. Saidi, “Characterisations of orthogonality in certain Banach spaces”, Bull. Austral. Math. Soc., 65:1 (2002), 93–104 | DOI | MR | Zbl
[8] F. B. Saidi, “An extension of the notion of orthogonality to Banach spaces”, J. Math. Anal. Appl., 267:1 (2002), 29–47 | DOI | MR | Zbl
[9] S. V. Astashkin, E. M. Semenov, “On a property of rearrangement invariant spaces whose second Köthe dual is nonseparable”, Math. Notes, 107:1 (2020), 10–19 | DOI | DOI | MR | Zbl
[10] S. V. Astashkin, E. M. Semenov, “Orthogonal elements in nonseparable rearrangement invariant spaces”, Dokl. Math., 102:3 (2020), 449–450 | DOI | DOI
[11] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, Ergeb. Math. Grenzgeb., II, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp. | MR | Zbl
[12] S. G. Kreĭn, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Transl. Math. Monogr., 54, Amer. Math. Soc., Providence, RI, 1982, xii+375 pp. | MR | MR | Zbl | Zbl
[13] C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp. | MR | Zbl
[14] M. A. Krasnosel'skiĭ, Ya. B. Rutickiĭ, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961, xi+249 pp. | MR | MR | Zbl | Zbl
[15] M. M. Rao, Z. D. Ren, Theory of Orlicz spaces, Monogr. Textbooks Pure Appl. Math., 146, Marcel Dekker, Inc., New York, 1991, xii+449 pp. | MR | Zbl
[16] E. V. Tokarev, “O podprostranstvakh nekotorykh simmetrichnykh prostranstv”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 24, Vischa shkola, Kharkov, 1975, 156–161 | MR | Zbl
[17] P. N. Dowling, N. Randrianantoanina, “Asymptotically isometric copies of $\ell^\infty$ in Banach spaces and a theorem of Bessaga and Pełczyński”, Proc. Amer. Math. Soc., 128:11 (2000), 3391–3397 | DOI | MR | Zbl