New moduli components of rank~2 bundles on projective space
Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1503-1552
Voir la notice de l'article provenant de la source Math-Net.Ru
We present a new family of monads whose cohomology is a stable rank 2 vector bundle on $\mathbb{P}^3$. We also study the irreducibility and smoothness together with a geometrical description of some of these families. These facts are used to construct a new infinite series of rational moduli components of stable rank 2 vector bundles with trivial determinant and growing second Chern class. We also prove that the moduli space of stable rank 2 vector bundles with trivial determinant and second Chern class equal to 5 has exactly three irreducible rational components.
Bibliography: 40 titles.
Keywords:
rank 2 bundles, monads, instanton bundles.
@article{SM_2021_212_11_a0,
author = {C. Almeida and M. Jardim and A. S. Tikhomirov and S. A. Tikhomirov},
title = {New moduli components of rank~2 bundles on projective space},
journal = {Sbornik. Mathematics},
pages = {1503--1552},
publisher = {mathdoc},
volume = {212},
number = {11},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_11_a0/}
}
TY - JOUR AU - C. Almeida AU - M. Jardim AU - A. S. Tikhomirov AU - S. A. Tikhomirov TI - New moduli components of rank~2 bundles on projective space JO - Sbornik. Mathematics PY - 2021 SP - 1503 EP - 1552 VL - 212 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2021_212_11_a0/ LA - en ID - SM_2021_212_11_a0 ER -
C. Almeida; M. Jardim; A. S. Tikhomirov; S. A. Tikhomirov. New moduli components of rank~2 bundles on projective space. Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1503-1552. http://geodesic.mathdoc.fr/item/SM_2021_212_11_a0/