New moduli components of rank~2 bundles on projective space
Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1503-1552

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a new family of monads whose cohomology is a stable rank 2 vector bundle on $\mathbb{P}^3$. We also study the irreducibility and smoothness together with a geometrical description of some of these families. These facts are used to construct a new infinite series of rational moduli components of stable rank 2 vector bundles with trivial determinant and growing second Chern class. We also prove that the moduli space of stable rank 2 vector bundles with trivial determinant and second Chern class equal to 5 has exactly three irreducible rational components. Bibliography: 40 titles.
Keywords: rank 2 bundles, monads, instanton bundles.
@article{SM_2021_212_11_a0,
     author = {C. Almeida and M. Jardim and A. S. Tikhomirov and S. A. Tikhomirov},
     title = {New moduli components of rank~2 bundles on projective space},
     journal = {Sbornik. Mathematics},
     pages = {1503--1552},
     publisher = {mathdoc},
     volume = {212},
     number = {11},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_11_a0/}
}
TY  - JOUR
AU  - C. Almeida
AU  - M. Jardim
AU  - A. S. Tikhomirov
AU  - S. A. Tikhomirov
TI  - New moduli components of rank~2 bundles on projective space
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1503
EP  - 1552
VL  - 212
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_11_a0/
LA  - en
ID  - SM_2021_212_11_a0
ER  - 
%0 Journal Article
%A C. Almeida
%A M. Jardim
%A A. S. Tikhomirov
%A S. A. Tikhomirov
%T New moduli components of rank~2 bundles on projective space
%J Sbornik. Mathematics
%D 2021
%P 1503-1552
%V 212
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_11_a0/
%G en
%F SM_2021_212_11_a0
C. Almeida; M. Jardim; A. S. Tikhomirov; S. A. Tikhomirov. New moduli components of rank~2 bundles on projective space. Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1503-1552. http://geodesic.mathdoc.fr/item/SM_2021_212_11_a0/