New moduli components of rank 2 bundles on projective space
Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1503-1552 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a new family of monads whose cohomology is a stable rank 2 vector bundle on $\mathbb{P}^3$. We also study the irreducibility and smoothness together with a geometrical description of some of these families. These facts are used to construct a new infinite series of rational moduli components of stable rank 2 vector bundles with trivial determinant and growing second Chern class. We also prove that the moduli space of stable rank 2 vector bundles with trivial determinant and second Chern class equal to 5 has exactly three irreducible rational components. Bibliography: 40 titles.
Keywords: rank 2 bundles, monads, instanton bundles.
@article{SM_2021_212_11_a0,
     author = {C. Almeida and M. Jardim and A. S. Tikhomirov and S. A. Tikhomirov},
     title = {New moduli components of rank~2 bundles on projective space},
     journal = {Sbornik. Mathematics},
     pages = {1503--1552},
     year = {2021},
     volume = {212},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_11_a0/}
}
TY  - JOUR
AU  - C. Almeida
AU  - M. Jardim
AU  - A. S. Tikhomirov
AU  - S. A. Tikhomirov
TI  - New moduli components of rank 2 bundles on projective space
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1503
EP  - 1552
VL  - 212
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_11_a0/
LA  - en
ID  - SM_2021_212_11_a0
ER  - 
%0 Journal Article
%A C. Almeida
%A M. Jardim
%A A. S. Tikhomirov
%A S. A. Tikhomirov
%T New moduli components of rank 2 bundles on projective space
%J Sbornik. Mathematics
%D 2021
%P 1503-1552
%V 212
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2021_212_11_a0/
%G en
%F SM_2021_212_11_a0
C. Almeida; M. Jardim; A. S. Tikhomirov; S. A. Tikhomirov. New moduli components of rank 2 bundles on projective space. Sbornik. Mathematics, Tome 212 (2021) no. 11, pp. 1503-1552. http://geodesic.mathdoc.fr/item/SM_2021_212_11_a0/

[1] C. Bănică, N. Manolache, “Rank 2 stable vector bundles on $\mathbb{P}^3(\mathbb{C})$ with Chern classes $c_1=-1$, $c_2 = -4$”, Math. Z., 190:3 (1985), 315–339 | DOI | MR | Zbl

[2] C. Bănică, M. Putinar, G. Schumacher, “Variation der globalen Ext in Deformationen kompakter komplexer Räume”, Math. Ann., 250:2 (1980), 135–155 | DOI | MR | Zbl

[3] W. Barth, “Some properties of stable rank-2 vector bundles on $\mathbb{P}_n$”, Math. Ann., 226:2 (1977), 125–150 | DOI | MR | Zbl

[4] W. Barth, “Stable vector bundles on $\mathbb{P}_3$, some experimental data”, Les équations de Yang–Mills, Seminaire E.N.S. 1977–1978, Astérisque, 71-72, Soc. Math. France, Paris, 1980, 205–218 | MR | Zbl

[5] W. Barth, G. Elencwajg, “Concernant la cohomologie des fibres algébriques stables sur $\mathbb{P}_n(\mathbb{C})$”, Variétés analytiques compactes (Nice, 1977), Lecture Notes in Math., 683, Springer, Berlin, 1978, 1–24 | DOI | MR | Zbl

[6] W. Barth, K. Hulek, “Monads and moduli of vector bundles”, Manuscripta Math., 25:4 (1978), 323–347 | DOI | MR | Zbl

[7] W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), 4, 2nd ed., Springer-Verlag, Berlin, 2004, xii+436 pp. | DOI | MR | Zbl

[8] G. Bohnhorst, H. Spindler, “The stability of certain vector bundles on $\mathbb{P}^n$”, Complex algebraic varieties (Bayreuth, 1990), Lecture Notes in Math., 1507, Springer, Berlin, 1992, 39–50 | DOI | MR | Zbl

[9] J. Brun, A. Hirschowitz, “Variété des droites sauteuses du fibré instanton général”, Compos. Math., 53:3 (1984), 325–336 | MR | Zbl

[10] U. Bruzzo, D. Markushevich, A. S. Tikhomirov, “Moduli of symplectic instanton vector bundles of higher rank on projective space $\mathbb{P}^3$”, Cent. Eur. J. Math., 10:4 (2012), 1232–1245 | DOI | MR | Zbl

[11] Mei-Chu Chang, “Stable rank 2 bundles on $\mathbf{IP}^3$ with $c_1=0$, $c_2=4$ and $\alpha=1$”, Math. Z., 184:3 (1983), 407–415 | DOI | MR | Zbl

[12] Mei-Chu Chang, “Stable rank 2 reflexive sheaves on $\mathbf{P}^3$ with small $c_2$ and applications”, Trans. Amer. Math. Soc., 284:1 (1984), 57–89 | DOI | MR | Zbl

[13] I. Coandă, A. Tikhomirov, G. Trautmann, “Irreducibility and smoothness of the moduli space of mathematical 5-instantons over $\mathbb{P}_3$”, Internat. J. Math., 14:1 (2003), 1–45 | DOI | MR | Zbl

[14] L. Costa, R. M. Miró-Roig, “Monads and regularity of vector bundles on projective varieties”, Michigan Math. J., 55:2 (2007), 417–436 | DOI | MR | Zbl

[15] L. Ein, “Generalized null correlation bundles”, Nagoya Math. J., 111 (1988), 13–24 | DOI | MR | Zbl

[16] G. Ellingsrud, S. A. Strømme, “Stable rank $2$ vector bundles on $\mathbb{P}^3$ with $c_1 = 0$ and $c_2 = 3$”, Math. Ann., 255:1 (1981), 123–135 | DOI | MR | Zbl

[17] B. Fantechi, L. Göttsche, L. Illusie, S. L. Kleiman, N. Nitsure, A. Vistoli, Fundamental algebraic geometry. Grothendieck's FGA explained, Math. Surveys Monogr., 123, Amer. Math. Soc., Providence, RI, 2005, x+339 pp. | DOI | MR | Zbl

[18] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977, xvi+496 pp. | DOI | MR | MR | Zbl | Zbl

[19] R. Hartshorne, “Stable vector bundles of rank 2 on $\mathbb{P}^3$”, Math. Ann., 238:3 (1978), 229–280 | DOI | MR | Zbl

[20] R. Hartshorne, “Stable reflexive sheaves”, Math. Ann., 254:2 (1980), 121–176 | DOI | MR | Zbl

[21] R. Hartshorne, A. P. Rao, “Spectra and monads of stable bundles”, J. Math. Kyoto Univ., 31:3 (1991), 789–806 | DOI | MR | Zbl

[22] R. Hartshorne, I. Sols, “Stable rank 2 vector bundles on $\mathbf{P}^3$ with $c_1=-1$, $c_2=2$”, J. Reine Angew. Math., 325 (1981), 145–152 | MR | Zbl

[23] G. Horrocks, “Vector bundles on the punctured spectrum of a local ring”, Proc. London Math. Soc. (3), 14:4 (1964), 689–713 | DOI | MR | Zbl

[24] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Cambridge Math. Lib., 2nd ed., Cambridge, Cambridge Univ. Press, 2010, xviii+325 pp. | DOI | MR | Zbl

[25] M. Jardim, “Instanton sheaves on complex projective spaces”, Collect. Math., 57:1 (2006), 69–91 | MR | Zbl

[26] M. Jardim, S. Marchesi, A. Wissdorf, “Moduli of autodual instanton bundles”, Bull. Braz. Math. Soc. (N.S.), 47:3 (2016), 823–843 | DOI | MR | Zbl

[27] M. Jardim, R. V. Martins, “Linear and Steiner bundles on projective varieties”, Comm. Algebra, 38:6 (2010), 2249–2270 | DOI | MR | Zbl

[28] M. Jardim, M. Verbitsky, “Trihyperkähler reduction and instanton bundles on $\mathbb{C}\mathbb{P}^3$”, Compos. Math., 150:11 (2014), 1836–1868 | DOI | MR | Zbl

[29] P. I. Katsylo, “Rationality of the module variety of mathematical instantons with $c_2=5$”, Lie groups, their discrete subgroups, and invariant theory, Adv. Soviet Math., 8, Amer. Math. Soc., Providence, RI, 1992, 105–111 | DOI | MR | Zbl

[30] P. I. Katsylo, G. Ottaviani, “Regularity of the moduli space of instanton bundles $\mathbf{MI}_{\mathbf{P}^3}(5)$”, Transform. Groups, 8:2 (2003), 147–158 | DOI | MR | Zbl

[31] A. A. Kytmanov, A. S. Tikhomirov, S. A. Tikhomirov, “Series of rational moduli components of stable rank two vector bundles on $\mathbb{P}^3$”, Selecta Math. (N.S.), 25:2 (2019), 29, 47 pp. | DOI | MR | Zbl

[32] H. Lange, “Universal families of extensions”, J. Algebra, 83:1 (1983), 101–112 | DOI | MR | Zbl

[33] N. Manolache, “Rank 2 stable vector bundles on $\mathbf{P}^3$ with Chern classes $c_1=-1$, $c_2=2$”, Rev. Roumaine Math. Pures Appl., 26:9 (1981), 1203–1209 | MR | Zbl

[34] M. Maruyama, “Moduli of stable sheaves. I”, J. Math. Kyoto Univ., 17:1 (1977), 91–126 | DOI | MR | Zbl

[35] Ch. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, Progr. Math., 3, Birkhäuser, Boston, Mass., 1980, vii+389 pp. | DOI | MR | MR | Zbl | Zbl

[36] A. P. Rao, “A family of vector bundles on $\mathbb{P}^3$”, Space curves (Rocca di Papa, 1985), Lecture Notes in Math., 1266, Springer, Berlin, 1987, 208–231 | DOI | MR | Zbl

[37] I. R. Shafarevich, Basic algebraic geometry, v. 1, Varieties in projective space, 3rd ed., Springer, Heidelberg, 2013, xviii+310 pp. | DOI | MR | Zbl

[38] A. S. Tikhomirov, “Moduli of mathematical instanton vector bundles with odd $c_2$ on projective space”, Izv. Math., 76:5 (2012), 991–1073 | DOI | DOI | MR | Zbl

[39] A. S. Tikhomirov, “Moduli of mathematical instanton vector bundles with even $c_2$ on projective space”, Izv. Math., 77:6 (2013), 1195–1223 | DOI | DOI | MR | Zbl

[40] A. S. Tikhomirov, S. A. Tikhomirov, D. A. Vassiliev, “Construction of stable rank 2 bundles on $\mathbb{P}^3$ via symplectic bundles”, Siberian Math. J., 60:2 (2019), 343–358 | DOI | DOI | MR | Zbl