A~Littlewood-Paley-Rubio de~Francia inequality for bounded Vilenkin systems
Sbornik. Mathematics, Tome 212 (2021) no. 10, pp. 1491-1502

Voir la notice de l'article provenant de la source Math-Net.Ru

Rubio de Francia proved a one-sided Littlewood-Paley inequality for the square function constructed from an arbitrary system of disjoint intervals. Later, Osipov proved a similar inequality for Walsh systems. We prove a similar inequality for more general Vilenkin systems. Bibliography: 11 titles.
Keywords: Littlewood-Paley-Rubio de Francia inequality, Vilenkin systems.
@article{SM_2021_212_10_a5,
     author = {A. S. Tselishchev},
     title = {A~Littlewood-Paley-Rubio {de~Francia} inequality for bounded {Vilenkin} systems},
     journal = {Sbornik. Mathematics},
     pages = {1491--1502},
     publisher = {mathdoc},
     volume = {212},
     number = {10},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_10_a5/}
}
TY  - JOUR
AU  - A. S. Tselishchev
TI  - A~Littlewood-Paley-Rubio de~Francia inequality for bounded Vilenkin systems
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1491
EP  - 1502
VL  - 212
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_10_a5/
LA  - en
ID  - SM_2021_212_10_a5
ER  - 
%0 Journal Article
%A A. S. Tselishchev
%T A~Littlewood-Paley-Rubio de~Francia inequality for bounded Vilenkin systems
%J Sbornik. Mathematics
%D 2021
%P 1491-1502
%V 212
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_10_a5/
%G en
%F SM_2021_212_10_a5
A. S. Tselishchev. A~Littlewood-Paley-Rubio de~Francia inequality for bounded Vilenkin systems. Sbornik. Mathematics, Tome 212 (2021) no. 10, pp. 1491-1502. http://geodesic.mathdoc.fr/item/SM_2021_212_10_a5/