A~Littlewood-Paley-Rubio de~Francia inequality for bounded Vilenkin systems
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 212 (2021) no. 10, pp. 1491-1502
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Rubio de Francia proved a one-sided Littlewood-Paley inequality for the square function constructed from an arbitrary system of
disjoint intervals. Later, Osipov proved a similar inequality for Walsh systems. We prove a similar inequality for more general Vilenkin systems.
Bibliography: 11 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Littlewood-Paley-Rubio de Francia inequality, Vilenkin systems.
                    
                    
                    
                  
                
                
                @article{SM_2021_212_10_a5,
     author = {A. S. Tselishchev},
     title = {A~Littlewood-Paley-Rubio {de~Francia} inequality for bounded {Vilenkin} systems},
     journal = {Sbornik. Mathematics},
     pages = {1491--1502},
     publisher = {mathdoc},
     volume = {212},
     number = {10},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_10_a5/}
}
                      
                      
                    A. S. Tselishchev. A~Littlewood-Paley-Rubio de~Francia inequality for bounded Vilenkin systems. Sbornik. Mathematics, Tome 212 (2021) no. 10, pp. 1491-1502. http://geodesic.mathdoc.fr/item/SM_2021_212_10_a5/
