A Littlewood-Paley-Rubio de Francia inequality for bounded Vilenkin systems
Sbornik. Mathematics, Tome 212 (2021) no. 10, pp. 1491-1502 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Rubio de Francia proved a one-sided Littlewood-Paley inequality for the square function constructed from an arbitrary system of disjoint intervals. Later, Osipov proved a similar inequality for Walsh systems. We prove a similar inequality for more general Vilenkin systems. Bibliography: 11 titles.
Keywords: Littlewood-Paley-Rubio de Francia inequality, Vilenkin systems.
@article{SM_2021_212_10_a5,
     author = {A. S. Tselishchev},
     title = {A~Littlewood-Paley-Rubio {de~Francia} inequality for bounded {Vilenkin} systems},
     journal = {Sbornik. Mathematics},
     pages = {1491--1502},
     year = {2021},
     volume = {212},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_10_a5/}
}
TY  - JOUR
AU  - A. S. Tselishchev
TI  - A Littlewood-Paley-Rubio de Francia inequality for bounded Vilenkin systems
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1491
EP  - 1502
VL  - 212
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_10_a5/
LA  - en
ID  - SM_2021_212_10_a5
ER  - 
%0 Journal Article
%A A. S. Tselishchev
%T A Littlewood-Paley-Rubio de Francia inequality for bounded Vilenkin systems
%J Sbornik. Mathematics
%D 2021
%P 1491-1502
%V 212
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2021_212_10_a5/
%G en
%F SM_2021_212_10_a5
A. S. Tselishchev. A Littlewood-Paley-Rubio de Francia inequality for bounded Vilenkin systems. Sbornik. Mathematics, Tome 212 (2021) no. 10, pp. 1491-1502. http://geodesic.mathdoc.fr/item/SM_2021_212_10_a5/

[1] J. Bourgain, “On square functions on the trigonometric system”, Bull. Soc. Math. Belg. Sér. B, 37:1 (1985), 20–26 | MR | Zbl

[2] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991, xiv+368 pp. | DOI | MR | MR | Zbl | Zbl

[3] S. V. Kislyakov, “Martingale transforms and uniformly convergent orthogonal series”, J. Soviet Math., 37:5 (1987), 1276–1287 | DOI | MR | Zbl

[4] S. V. Kislyakov, D. V. Parilov, “On the Littlewood–Paley theorem for arbitrary intervals”, J. Math. Sci. (N.Y.), 139:2 (2006), 6417–6424 | DOI | MR | Zbl

[5] N. N. Osipov, “Littlewood–Paley–Rubio de Francia inequality for the Walsh system”, Algebra i analiz, 28:5 (2016), 236–246 ; St. Petersburg Math. J., 28:5 (2017), 719–726 | MR | Zbl | DOI

[6] J. L. Rubio de Francia, “A Littlewood–Paley inequality for arbitrary intervals”, Rev. Mat. Iberoamericana, 1:2 (1985), 1–14 | DOI | MR | Zbl

[7] P. Simon, “Investigations with respect to the Vilenkin system”, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 27 (1984), 87–101 | MR | Zbl

[8] N. Ja. Vilenkin, “On a class of complete orthonormal systems”, Amer. Math. Soc. Transl. Ser. 2, 28, Amer. Math. Soc., Providence, RI, 1963, 1–35 | DOI | MR | MR | Zbl

[9] Ch. Watari, “On generalized Walsh Fourier series”, Tohoku Math. J. (2), 10:3 (1958), 211–241 | DOI | MR | Zbl

[10] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Lecture Notes in Math., 1568, Springer-Verlag, Berlin, 1994, viii+218 pp. | DOI | MR | Zbl

[11] Wo-Sang Young, “Littlewood–Paley and multiplier theorems for Vilenkin–Fourier series”, Canad. J. Math., 46:3 (1994), 662–672 | DOI | MR | Zbl