Slide polynomials and subword complexes
Sbornik. Mathematics, Tome 212 (2021) no. 10, pp. 1471-1490

Voir la notice de l'article provenant de la source Math-Net.Ru

Subword complexes were defined by Knutson and Miller in 2004 to describe Gröbner degenerations of matrix Schubert varieties. Subword complexes of a certain type are called pipe dream complexes. The facets of such a complex are indexed by pipe dreams, or, equivalently, by monomials in the corresponding Schubert polynomial. In 2017 Assaf and Searles defined a basis of slide polynomials, generalizing Stanley symmetric functions, and described a combinatorial rule for expanding Schubert polynomials in this basis. We describe a decomposition of subword complexes into strata called slide complexes. The slide complexes appearing in such a way are shown to be homeomorphic to balls or spheres. For pipe dream complexes, such strata correspond to slide polynomials. Bibliography: 14 titles.
Keywords: flag varieties, Schubert polynomials, Grothendieck polynomials, simplicial complexes.
@article{SM_2021_212_10_a4,
     author = {E. Yu. Smirnov and A. A. Tutubalina},
     title = {Slide polynomials and subword complexes},
     journal = {Sbornik. Mathematics},
     pages = {1471--1490},
     publisher = {mathdoc},
     volume = {212},
     number = {10},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_10_a4/}
}
TY  - JOUR
AU  - E. Yu. Smirnov
AU  - A. A. Tutubalina
TI  - Slide polynomials and subword complexes
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1471
EP  - 1490
VL  - 212
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_10_a4/
LA  - en
ID  - SM_2021_212_10_a4
ER  - 
%0 Journal Article
%A E. Yu. Smirnov
%A A. A. Tutubalina
%T Slide polynomials and subword complexes
%J Sbornik. Mathematics
%D 2021
%P 1471-1490
%V 212
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2021_212_10_a4/
%G en
%F SM_2021_212_10_a4
E. Yu. Smirnov; A. A. Tutubalina. Slide polynomials and subword complexes. Sbornik. Mathematics, Tome 212 (2021) no. 10, pp. 1471-1490. http://geodesic.mathdoc.fr/item/SM_2021_212_10_a4/