Asymptotics of the scattering operator for the wave equation in a~singularly perturbed domain
Sbornik. Mathematics, Tome 212 (2021) no. 10, pp. 1436-1470
Voir la notice de l'article provenant de la source Math-Net.Ru
A family of Cauchy-Dirichlet problems for the wave equations in unbounded domains $\Lambda_{\varepsilon}$ is considered (here $\varepsilon\geqslant 0$ is a small parameter); a scattering operator $\mathbb{S}_{\varepsilon}$ is associated with each domain $\Lambda_\varepsilon$. For $\varepsilon>0$ the boundaries of $\Lambda_{\varepsilon}$ are smooth, whilw the boundary of the limit domain $\Lambda_{0}$ contains a conical point. The asymptotics of $\mathbb{S}_{\varepsilon}$ as $\varepsilon\to 0$ is determined.
Bibliography: 11 titles.
Keywords:
wave equation, singularly perturbed domains, scattering operator.
@article{SM_2021_212_10_a3,
author = {D. V. Korikov},
title = {Asymptotics of the scattering operator for the wave equation in a~singularly perturbed domain},
journal = {Sbornik. Mathematics},
pages = {1436--1470},
publisher = {mathdoc},
volume = {212},
number = {10},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2021_212_10_a3/}
}
TY - JOUR AU - D. V. Korikov TI - Asymptotics of the scattering operator for the wave equation in a~singularly perturbed domain JO - Sbornik. Mathematics PY - 2021 SP - 1436 EP - 1470 VL - 212 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2021_212_10_a3/ LA - en ID - SM_2021_212_10_a3 ER -
D. V. Korikov. Asymptotics of the scattering operator for the wave equation in a~singularly perturbed domain. Sbornik. Mathematics, Tome 212 (2021) no. 10, pp. 1436-1470. http://geodesic.mathdoc.fr/item/SM_2021_212_10_a3/