Asymptotics of the scattering operator for the wave equation in a singularly perturbed domain
Sbornik. Mathematics, Tome 212 (2021) no. 10, pp. 1436-1470 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A family of Cauchy-Dirichlet problems for the wave equations in unbounded domains $\Lambda_{\varepsilon}$ is considered (here $\varepsilon\geqslant 0$ is a small parameter); a scattering operator $\mathbb{S}_{\varepsilon}$ is associated with each domain $\Lambda_\varepsilon$. For $\varepsilon>0$ the boundaries of $\Lambda_{\varepsilon}$ are smooth, whilw the boundary of the limit domain $\Lambda_{0}$ contains a conical point. The asymptotics of $\mathbb{S}_{\varepsilon}$ as $\varepsilon\to 0$ is determined. Bibliography: 11 titles.
Keywords: wave equation, singularly perturbed domains, scattering operator.
@article{SM_2021_212_10_a3,
     author = {D. V. Korikov},
     title = {Asymptotics of the scattering operator for the wave equation in a~singularly perturbed domain},
     journal = {Sbornik. Mathematics},
     pages = {1436--1470},
     year = {2021},
     volume = {212},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2021_212_10_a3/}
}
TY  - JOUR
AU  - D. V. Korikov
TI  - Asymptotics of the scattering operator for the wave equation in a singularly perturbed domain
JO  - Sbornik. Mathematics
PY  - 2021
SP  - 1436
EP  - 1470
VL  - 212
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2021_212_10_a3/
LA  - en
ID  - SM_2021_212_10_a3
ER  - 
%0 Journal Article
%A D. V. Korikov
%T Asymptotics of the scattering operator for the wave equation in a singularly perturbed domain
%J Sbornik. Mathematics
%D 2021
%P 1436-1470
%V 212
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2021_212_10_a3/
%G en
%F SM_2021_212_10_a3
D. V. Korikov. Asymptotics of the scattering operator for the wave equation in a singularly perturbed domain. Sbornik. Mathematics, Tome 212 (2021) no. 10, pp. 1436-1470. http://geodesic.mathdoc.fr/item/SM_2021_212_10_a3/

[1] N. A. Shenk II, “Eigenfunction expansions and scattering theory for the wave equation in an exterior region”, Arch. Rational Mech. Anal., 21:2 (1966), 120–150 | DOI | MR | Zbl

[2] V. Maz'ya, S. Nazarov, B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, Oper. Theory Adv. Appl., 111, Birkhäuser Verlag, Basel, 2000, xxiv+435 pp. | DOI | MR | Zbl

[3] M. S. Agranovich, M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Russian Math. Surveys, 19:3 (1964), 53–157 | DOI | MR | Zbl

[4] B. A. Plamenevskii, “On the Dirichlet problem for the wave equation in a cylinder with edges”, St. Petersburg Math. J., 10:2 (1999), 373–397 | MR | Zbl

[5] A. V. Filinovskii, “Stabilization of the solutions of the wave equation in unbounded domains”, Sb. Math., 187:6 (1996), 917–947 | DOI | DOI | MR | Zbl

[6] S. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl

[7] A. Yu. Kokotov, P. Neittaanmäki, B. A. Plamenevskii, “Difraction on a cone: the asymptotics of solutions near the vertex”, J. Math. Sci. (N.Y.), 109:5 (2002), 1894–1910 | DOI | MR | Zbl

[8] A. Yu. Kokotov, B. A. Plamenevskii, “On the Cauchy–Dirichlet problem for hyperbolic systems in a wedge”, St. Petersburg Math. J., 11:3 (2000), 497–534 | MR | Zbl

[9] T. Kato, “Growth properties of solutions of the reduced wave equation with a variable coefficient”, Comm. Pure Appl. Math., 12:3 (1959), 403–425 | DOI | MR | Zbl

[10] N. Aronszajn, “A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order”, J. Math. Pures Appl. (9), 36 (1957), 235–249 | MR | Zbl

[11] M. Sh. Birman, M. Z. Solomjak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, D. Reidel Publ. Co., Dordrecht, 1987, xv+301 pp. | MR | Zbl